
Ì©§ çÊmÌ‹tzÆ:
ª çY|½ - 2022

11

ùçŒçª â Esç|Ä¤ çz‡ z E‹Ä®: ªÒoz GœNÿçºç® Nÿç{ FÄ ÌæœwOÿç{ ? - ÄçTsç|uÄÄ ÌæœwOÿç{
NÿÁœoz @ Ÿç®: E‹Ä®: uû‡ ç § uÄoìª ½ EÒ|uo @

tlgç‹Ä®: EçNÿç¬ç‹Ä®: Yzuo @ owoy®çzDuœ Nÿ³çŒ uYÞzDvËªŒâ ¤ çmç: Äoì|Âçu‹ç Y ÐÅ®‹oz @ Äoì|ÂzÊì
uYÞç‡ çuºo: NÀÿª : § uÄoìª ½ EÒ|uo @ NÿçzÆçoâ rç®oz ®oâ
E‹Ä®: Fuo œtË® ÄæÆ:, NìÿÂæ, ÄæÆœº©œºç,
œºËœºÌ©¤‹‡ : Fn®çt®: Esç|: § Äv‹o Fuo @ œùœÀÌW•z
Ÿ®ìOÿË® E‹Ä®Æ£tË® œtçŒçæ œºËœºÌ©¤‹‡ : Fn®s|:
ËÄyNÿç®|: @ tlgç‹Ä®z œtçŒçæ NÀÿª : œuºÄn®| Gœ-
Ësç›®oz @ osç Y EçNÿç¬ç‹Ä®z uNÀÿ®çœtæ uŒu³çn®
ovnNÀÿ®ç®ç: Nÿoç| Nÿª | Ìç‡ Œæ uÄÆzÊmª â Fn®çtyuŒ
HØ‹oz @ owoy®z Y uYÞç‹Ä®z œtçŒçæ œºËœºÌ©¤‹‡ :
uYÞ¿œzm ùçzn®oz @ EçNÿç¬ç‹Ä®Ë® ÌæÄu‡ |oæ ¿œª â
Ftª â @ E‡ ËoŒš çzNÿË® uÞŸNÿçºNÿª â E‹Ä®æ œÅ®çª @

ªÒçNÿuÄ: NÿçuÂtçÌ: ºVìÄæÆªÒçNÿçÃ®z ªW•Âª â
EçYº®uo EŒzŒ š çzNzÿŒ @

ÄçTsç|uÄÄ ÌæœwOÿç{ ÄçTs|Ÿuoœð®z @
\To: uœoºç{ Ä‹tz œçÄ|oyœºª z¾çºç{ @@

(EÒæ) ÄçTsç|uÄÄ Ì©œwOÿç{ \To: uœoºç{
š çzNzÿ uÄùªçŒçuŒ œtçuŒ ¤ çmuYÕz‹ç Ì©¤‹‡ Œçª çuŒ œçÄ|oyœºª z¾çºç{ ÄçTs|Ÿuoœð®z Ä‹tz @
Y uŒut|Ébçu‹ç @ LoË® œeŒª â E‡ Ëoçoâ Gœuº
Nÿºmy®ª â @ oo: YnÄçuº œwsSÄçM®çuŒ uÌò°v‹o @ Ä‹tz - Eu§ Äçt®z

1. EÒæ Ä‹tz @Nÿ: ? - EÒª â
2. ÄçTsç|uÄÄ Ì©œwOÿç{ œçÄ|oyœºª z¾çºç{ Ä‹tz @Nÿç{ Ä‹tz ? - œçÄ|oyœºª z¾çºç{ Ä‹tz
3. \To: uœoºç{ œçÄ|oyœºª z¾çºç{ Ä‹tz @oç{ NÿyÐÆç{ ? - uœoºç{
4. ÄçTs|Ÿuoœð®z Ä‹tz @NÿË® uœoºç{ ? - \To: uœoºç{
EÒæ Ä‹tz Fn®zo®çzª |†®z Nÿoç| Fuo uÂvQoæ uYÞz @ œìŒ: NÿyÐÆç{ ? - ÌæœwOÿç{

Esç|oâ EÒª â Fuo œtæ Ä‹tŒuNÀÿ®ç®çæ Nÿow|nÄÌ©¤‹‡ zŒ

Ÿsªª â GtçÒºmª â -

tlgç‹Ä®: -

EçNÿç¬ç‹Ä®:

uYÞç‹Ä®: -

ÌçW•umNÿªâ E‹Ä®uYÞmªâ
☛

Email- chaitanya.lakkundi@gmail.com

Y{o‹®: Ìì Â²ìÿvlg

œ

uYÞª ½ - 1

Ì©§ çÊmÌ‹tzÆ:
ª çY|½ - 2022

12

E‹Äzuo @ os{Ä œçÄ|oyœºª z¾çºç{ Fuo ›çtæ
uNÀÿ®ç®çæ Nÿª |nÄÌ©¤‹‡ zŒ E‹Äzuo @ ÄçTs|-
Ÿuoœð®z Fuo Ÿ®çz\Œª â @ \To: Fuo
uœÞçz: ÊÉeyÌ©¤ ‹‡ : @ E‹®çuŒ
uÄÆzÊmçuŒ @

uNÀÿ®çœtzŒ ÌÒ ®zÊçæ œÄ|mçæ Ìçqçoâ
Ì©¤‹‡ çz Äo|oz ozÊçæ œu…Æ: Euœ œeŒæ
ÆM®oz @ ®sç EÒæ œçÄ|oyœºª z¾çºç{
ÄçTs|Ÿuoœð®z Ä‹tz @ LÄªuœ Es|œîmú
ÄçM®æ uÌò°uo @ EÞ Ä®æ ÐÉbÄ‹o: ®oâ
LNÿË®{Ä ÄçM®Ë® ¤óŸNÿçºNæÿ œeŒæ
ÌznË®uo @ ÂVìŒç Gœç®zŒ ¤ wÒtâÄçM®Ë®
Es|: EÄT©®oz @

EvËªŒâ GtçÒºmz ËœÉbŸuoœÜ®sú
ŸuÌòš çzNÿ: ËÄyNwÿo: EçÌyoâ @ FtçŒë
Ÿç®: Erçoæ ŒîoŒª zNæÿ œùæ ËÄyNwÿn®
E‹Ä®uYÞmæ œÅ®çª @

ªÒçNÿuÄŒç § ucŒç uÄºuYoª â Euûoy®æ
NÿçÃ®æ § ucNÿçÃ®uª uo ª‹®oz @ oo½
ºçÄmÄ‡ª â Fuo EœºŒç©Œçuœ P®çoª â @
EÞ § uc: uÄºÂŸ®çzTçŒâ tÆ|®uo @ Fo:
ËÄyNwÿoª â EuTÀªª â GtçÒºmª â -

Fo: ŸçNâÿ § uc: E®çz†®ç®ç: uÄÄºmæ
Nÿºçzuo @ onÌ©¤ò: EvËo E®æ š çzNÿ: @

uŒª ç|mtqË® ÌªyuÒozÊì
Ìyª zÄ œöçÌŒNÿç{ÆÂË® @

E®çz†®ç®ç: ùçzoNÿ: Fuo rz®ª â)
H†Ä|Ë¢ ìÿºünŒT§ vËou§ ®ç|

2. Ìyª ç FÄ ®ç vËsoç EvËo @
vËsoçÄÒË®zÄ œìºæ ªVçzŒ: @@ - (1.6)

3. EÄÒË® FÄ ®ç vËsoç EvËo @
4. uŒª ç|mtqË® œöçÌŒNÿç{ÆÂË® ÌªyuÒozÊì

uŒª ç|mtqË® œöçÌŒNÿç{ÆÂË® ÌªyuÒozÊì Ìyª ç
Ìyª ç FÄ @

FÄ ®ç H†Ä|Ë¢ ìÿºünŒT§ vËou§ : ªVçzŒ: œìºª â EÄÒË®
5. ªVçzŒ: œìºª â EÄÒË® FÄ @

FÄ vËsoç (EvËo, oçª â E†®çËo) @
6. H†Ä|Ë¢ ìÿºünŒT§ vËou§ : ªVçzŒ: œìºª â EÄÒË®

EÞ Ìçqçoâ uYÞzm oçnœ®|ª â EÄT‹oìæ Ÿ®oçªÒz @
FÄ @

oÞçtç{ œeŒNÀÿª : œuºÂß®oz @
ŸsªÄçM®çoâ rç®oz ®oâ E®çz†®ç®ç: LÄ uÄÄºmª â

1. ®ç vËsoç EvËo @ (œîÄ|oŒš çzNÿçoâ ®oâÆ£t:
EÞçuœ uNÀÿ®oz @ uûoy®-owoy®-ÄçM®ç¥®çª â EÄ¤ ìò°oz

uûoy®ª â GtçÒºmª â -

tlgç‹Ä®: -

uYÞª ½ - 2

®oâ E®çz†®ç®ç: oçzÂŒæ uNÀÿ®oz EÞ
Fuo @ FÄ Fuo Æ£tçzDuœ LoË®
ÌîYNÿ: @ ÄËoìo: EÞ GnŸ zqçÂW”çº:
Ÿ®ìOÿ: @ GnŸ zqçÂW”çºË® uÄÄºmªÞ
Œ uNÀÿ®oz @ œº‹oì oË® ŸuÌòª ½
GtçÒºmæ § Äuo Nìÿª çºÌ©§ ÄË®
ªW•ÂçYºmª â - <vËso: œwusÃ®ç FÄ
ª çŒtlg:> Fuo @ uÒª çÂ®: œwusÃ®ç:
ª çŒtlg: FÄ vËso: @ EçWâSÂ-
§ çÊ®ç ÄOÿÃ®æ Yzoâ as if Fuo Es|:
FÄœtË® @ The Himalayas are, as

if a measuring scale used to
measure the earth.

ŸNwÿoœùzDuœ Ìyª ç FÄ vËsoç,
EÄÒË® FÄ vËsoç Fuo ÄçM®û®zŒ
GnŸ zqç œuºÂuqoç @

(oÞ Ÿuo®çzTy Fuo tlgË®çzœuº
uÂvQoª â @ ®vËªŒâ ÌçÐÅ®æ Ì:
EŒì®çzTy @ ®Ë® ÌçÐÅ®ª ½ GX®oz Ì:
Ÿuo®çzTy Fuo GX®oz @ Y‹üÌÐÆæ LÄæ uÒ Èî®oz ®tzNæÿ uYÞæ ÌÒÏçÆ: Æ£tçŒçæ oìÁ®ª â
ª ìQuª n®Þ Y‹ü: Ÿuo®çzTy, ª ìQª â EŒì®çzuT @) Fuo @ Fnsæ œùË® oçnœ®ú uYÞË® tÆ|Œço½ Eçnª-

EÞ E®çz†®ç EŒì®çzuTŒy, Ìyª ç Ÿuo®çzuTŒy @ (uYÞz ÌçôÄuo @
Ìçª ç‹®z‹ç Ÿuo®çzTy Fuo œìæuÂW•Æ£t: Ÿ®ìOÿ: @) NÿË® G›çuºtðæ uYÞª â EÄÂçzM® ËÄ®ª zÄ EŒìª çoìæ ®o-
Ìyª ç Fuo œwÉbz uYÞtÆ|‹çço½ rç®oz ®oâ uŒª ç|mtqË® ‹oçª â @ Ì¬zœzm EÞ uÄuÄÀ®oz @ § ucNÿçÃ®z ›çîÄú uÄÄwoz
œöçÌŒNÿç{ÆÂË® (¤ ÀÖm:) ÌªyuÒozÊì (ºuYoœtçsz|Êì) ºç\ç tÆºs: ª ìŒz: uÄ¾ççuªÞË® NìÿÆÂª â EœwXZoâ @
Ìyª ç @ ozÊì Ìª yuÒozÊì Ìyª ç FÄ F®ª â E®çz†®çŒTºy ŸNwÿoz ª ìuŒ: tÆºsæ Ÿuo Ätuo @ ÇÂçzNÿËoì Fnsª ½ -
vËsoç EvËo @ Esç|oâ ÌÄz|¥®çzDuœ GnNwÿÉbª â EËoyuo EçP®‹ª ìu‹çËoË® uÆÄæ Ìª ç†çz-
§ çÄ: @ uûoy®æ oçzÂŒæ ªVçzŒ: (F‹üË®) œìºzm ÌçNæÿ uÄ|U‹çv‹o ºqçæuÌ Ä‹çz NÀÿoîæ³ç @
Nwÿoª â @ F‹üœìºy EªºçÄoy EuoÌì‹tºy Fuo ŸuÌòª zÄ @ oçu‹ç uûÊûy®|u‹çºçNÿuºÉmì-
F®ª â E®çz†®ç ªVçzŒ: œìºª â EÄÒË®zÄ vËsoç EvËo @ Ëowmzjì ºçª : ÌÒ Âßªmz‹ç @@ - (1.19)
o‘ççª E®çz†®ç®ç: œìºo: F‹üœìºy Euœ GœÒçÌœçÞoçæ ÇÂçzNÿË®çË® tÆ|‹çço½ Eçtç{ Äm|Ìç©®zŒ rç®oz ®oâ
®çuo Fuo EÄT©®oz @ EÞ Þyum uNÀÿ®çœtçuŒ Ìv‹o Fuo @ oçu‹ç Y EçP®oâ

FtçŒë ÌÄz|Êçª â EæÆçŒçª â EÄTªŒæ Ì©œ‘çª ½ H†Ä|- (GOÿÄçŒâ), uÄUŒv‹o (ºçz‡ ®v‹o), owmzjì (ª çº®oì)
Ë¢ ìÿºünŒT§ vËou§ : Fn®zNÿËª çoâ Iÿoz @ ºnŒT§ Ëo®: Fuo @
Œçª ºnŒuNÿºmç: Gœuº ºnŒuNÿºmç: ŸÌwoç: LÄ F‹üœì®ç|: 1. ª ìuŒ: uÆÄª â EçP®oâ @
EÄÒçÌË® Nÿçºmª ½ (Òzoì:) Fuo EçÆ®: @ 2. ºqçæuÌ NÀÿoîŒâ uÄUŒv‹o @

uYÞª ½ - 3

Ì©§ çÊmÌ‹tzÆ:
ª çY|½ - 2022

13

3. ºçª: ÂßªmzŒ ÌÒ owmzjì @
Fn®zo{: uÞu§ : ÄçM®{: oçnœ®|uªtæ ÌW•XZoz @
1. ª ìuŒ: NìÿÆÂ: EvËo @ (oË® Ìªç‡ z: uÆÄª â EçP®oâ)
2. uNÿ‹oì ºçqÌçŒçæ Nÿ³çŒ EÄºçz‡ : Äo|oz @ (ºqçæuÌ NÀÿoîŒâ uÄUŒv‹o)
3. ºçªÂßªmç{ oçŒâ ºçqÌçŒâ ª çº®oçª â @ (ºçª: ÂßªmzŒ ÌÒ owmzjì)
uûÊûy®|uŒºçNÿuºÉmì: Fuo ºçªË® uÄÆzÊmª â @ uûbâ Œçª ÆÞì:, Ä{ºy @ Ä{uºuÄNÀÿª uŒºçNÿºmÆyÂ: Fn®s|:

onœtË® @

tlgç‹Ä®Ë® EçNÿç¬ç‹Ä®Ë® Y œîºNÿ¿œzm Fª æ uYÞç‹Ä®NÀÿªª â EçuÈn® œueoz Ìuo Esç|ÄTª: ^ubuo
§ Äuo @ œtçŒçæ œºËœºÌ©¤‹‡ : uNÀÿ®®ç ÌÒ Ì©¤‹‡ : Y Ìçqçoâ EÄT©®oz @ ZçÞç: uÆqNÿç: Y ÌªçŒºyn®ç Ÿ®çzOìæÿ
Ÿ§ Äv‹o @ uÄuÄ‡Æçz‡ {: rçoª vËo ®oâ uYÞ¿uœ rçŒæ Ëªºmçzœ®çzuT Fuo @ Eo: œçe°NÀÿª z EË® Ìæ®çz\ŒzŒ
ZçÞçmçª â GœNÿçº: ªÒç‹ç½ § uÄÉ®uo @ § Ä‹o: tðÌW”zoæ ŸuÄÉ® ŒîoŒçuŒ uYÞçum Euœ ºYu®oìæ ÆN’ìÿÄv‹o @ Fuo
utNâÿ @

EÞ § ucNÿçÃ®Ë® ŸsªÌT|Ë® E‹Ä®uYÞçum § Ä‹o: üÉbìª ½ EÒ|v‹o @ uYÞç‹Ä®ºYŒç®ç: o‹ÞçæÆ: uûoy®ÌW”zoz
Ÿç›®oz @ oÞ ÌæŸç›® ŒîoŒçuŒ uYÞçum ºX®‹oçª â @

 § ucNÿçÃ®Ë® E‹Ä®uYÞmª â -
 uYÞæ ºYu®oìæ o‹ÞçæÆ: -

GœÌæÒçº:

*
*

\çÂœìbË® ÌW”zoç{

https:// sambhasha. ksu.ac.in/Comp Ling/bhattikavya-nandini/

https://sambhasha.ksu.ac.in /anvaya´ chitranam

\çÂËsç‹çûçºç Ì©§ çÊmÌ‹tzÆË® TÀçÒNÿoç ËÄyNÿoìú ÆM®ç @

Ph - 080 - 26722576/26721052

\çÂ›çìb: - http:// www.sambhashanasandesha.in

E-mail : sandesha@samskritam.in samskritam@gmail.com
Twitter - @sambhashana Facebook - sambhashana.sandesha

Subscription rates for printed version Subscription rates for E - version

ª ìuüo›çuÞNÿç®ç: TÀçÒNÿnÄª ½ F|-›çuÞNÿç®ç: TÀçÒNÿnÄª ½

1 Rs. 200/- Rs. 800/- $ 30 USD

2 Rs. 400/- Rs. 1600/- $ 55 USD

3 Rs. 550/- Rs. 2400/- $ 85 USD

4 Rs. 750/- Rs. 3200/- $ 115 USD

5 Rs. 950/- Rs. 4000/- $ 145 USD

1 Rs. 200/- Rs. 800/- $ 15 USD

2 Rs. 400/- Rs. 1600/- $ 30 USD

3 Rs. 550/- Rs. 2400/- $ 45 USD

4 Rs. 750/- Rs. 3200/- $ 60 USD

5 Rs. 950/- Rs. 4000/- $ 75 USD

Regd. PostOrdinary. Post

Rs. 440/-

Rs. 880/-

Rs. 1270/-

Rs. 1710/-

Rs. 2150/-

Ì©§ çÊmÌ‹tzÆ:
ª çY|½ - 2022

14

PointerViz - Towards Visualizing Pointers for Novice Programmers

Akhila Sri Manasa Venigalla, Chaitanya S. Lakkundi*, Sridhar Chimalakonda

Intelligent Software & Human Analytics (ISHA) Research Lab

Dept. of Computer Science and Engineering

Indian Institute of Technology

Tirupati, India

{cs18m017, cs18s502*, ch}@iittp.ac.in

Abstract

Pointers are considered as one of the key concepts in

learning programming and are extensively used for

implementing several data structures. They lay the

foundation for handling dynamic aspects of a program,

increase execution speed and handle data types with

more efficiency. This makes it critical for budding

programmers to be well versed with using pointers.

However, most of the novice programmers find it

difficult and tricky to understand concepts such as

address allocations, pointers referring pointers and

data structures containing pointers. Hence, drawing

the physical structure and flow of pointers is

considered to be a common learning practice to gain

better clarity and avoid confusion when learning

pointers. But, it is time consuming and tedious to draw

the flow of pointers on paper while programming. To

help programmers understand these variations in

pointers, we propose PointerViz as a Google Chrome

extension that displays the pictorial representation of

selected code with pointers. We conducted a

preliminary survey with 40 students from various

universities and 83% of the users reported positive

experience with the plugin.

1. Introduction

Good programming skills require sound knowledge

of data structures. Learners of programming languages

face various difficulties in terms of understanding

various functions, attributes and data structures [1].

Several tools have been developed to help novices

learn programming [2,3,4,5,6]. They include games

that help students learn computer programming [7],

environments that support conventional programming

instructions like Mindstorm [4], Scratch [5], Blockly

[6], Snap! [8] and many other code visualization tools

such as Examplore [9] and Python tutor [3].

*This author has discontinued from the

institute.

execution speed, handling complex data structures with

more efficiency and ease. Pointers allow sharing

without copying through pass by reference, which is

advantageous when programmers desire to pass around

big arrays. They also enable programmers to resize

data structures whenever required, supporting dynamic

memory allocation. While security seems to be a

concern when pointers are used by novice

programmers, pointers provide a greater advantage in

terms of performance by speeding up program

execution [11]. Performance being a critical aspect of

programming, trade-off between security and

performance can be considered useful. A study

conducted by Lahtinen et al., states that most of the

students face difficulties in understanding pointers and

references [12]. This reveals that though pointers are

the basic concepts of programming, they are still

difficult to understand.

Visualization is one of the ways that can help

learners to gain a better of data structures. Researchers

have proposed various forms of code visualizations

to improve learning of novice programmers since a

couple of decades [13,3]. Continuous improvements

are being made to develop techniques and tools that can

better support visualization. Online Python Tutor

proposed by Philip Guo is one such tool that visualizes

code written after compilation [3]. Visualizing code

snippets written by programmers helps in better

program comprehension. Visualization can also aid

programmers who are well aware of data structures and

their implementation in helping them with trade-offs of

using pointers. Learners of programming are generally

tested on the address references and pointers to assess

their knowledge of data structures [12], making it

necessary for even novice learners to understand these

concepts.

A common practice of learners is to draw down

the flow of pointers’ data and references with respect to

memory allocations to better understand the code. But

this method demands time, effort and sometimes may

also be incorrect [14]. Hence, there is a strong need to

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Page 118
URI: https://hdl.handle.net/10125/63754
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

provide learners with technology that visualizes

pointers based on the program or pseudo code they

write, which is the main motivation for our work.

Though there are many existing visualization tools

that help in visualizing code snippets, there is not much

work done to visualize pointers and their references

before compilation, to the best of our knowledge.

Hence we propose PointerViz1 to support learners of

programming language to comprehend pointers better.

The remainder of this paper is structured as follows.

Section 2 discusses the related work followed by

Section 3, which focuses on design methodology and

development of PointerViz. Working of PointerViz is

described in Section 4. Section 5 presents user scenario

in the form 4 cases. We present the evaluation and user

survey results in Section 6 and Section 7. Finally, we

discuss the limitations in Section 8 and end the paper

with conclusions and future directions in the Section 9.

2. Related Work

Researchers have developed various visualization

tools to help novice programmers learn programming

quicker have been developed. Scratch [5] is a block-

based visualization tool that helps users to program

easier by supporting drag and drop of blocks than

writing the program. Blockly is also a block-based tool

that provides visualization of programs [6]. Coding

concepts are represented as interlocked blocks and

Blockly generates syntactically correct code in

programming language of our choice [6]. Tools like

Examplore provide visualization of API usage

examples to help users understand various correct ways

of using APIs in programming languages [9].

Progranimate, an e-learning web based tool assists

users in programming using flow chart representations.

It provides code generation, inspects variables and thus

provides syntax and semantic learning of programmers

to the users. This helps users to gain an in-depth sound

knowledge of the programming language [15]. NetBlox

is another visualization tool that has been developed to

enhance understanding of distributed programming

[16]. In this tool, messages that are communicated

among systems are represented as blocks with message

payloads. Programmers are provisioned to provide

Message Type that defines data present in the message.

Games is another direction of research that has

been leveraged to make programming interesting and

easy [17,18,19,20].One of the games developed by

Leutenegger et al. teaches fundamental programming

concepts in C++language, with the help of 2D game

development [18].Robot ON! is a game developed to

improve program

1https://github.com/AkhilaSriManasa/

PointerViz

Comprehension among learners. It helps players in

understanding of control flow, program statements,

data types and function calls by allowing players to

demonstrate their understanding of the above in a given

program [19]. RoBUG game has been developed to

support and motivate players in learning of effective

debugging. It comprises of four levels that require

player to do certain tasks in each of them, like code

tracing, using print statements to identify bugs, use

divide-and-conquer strategy to spot the bugs and using

breakpoints to analyze variable values [20].

Extensions to GCspy tool have been developed, that

track and visualize dynamic memory allocations as

nodes and graphs [21]. BlueJ is an IDE that provides

UML notation of Java code which helps users visualize

structure of the application [22]. Users can view source

code of classes present in UML diagrams by clicking

on them. CoffeeDregs, a dynamic analysis tool, has

been developed to support and visualize debugging

facilities [23]. VisuAlgo has been introduced to

visualize a set of predefined algorithms. It shows the

visual execution of an algorithm for a given input [24].

Jeliot3 has been developed as a programming tool that

enables users program and visualize step by step

execution of the program in the form of animations. It

is mainly focused on expression evaluation and is

depicted by the movement of messages, method calls,

values and references in the code [25]. Java Visualizer

illustrates dynamic run-time behavior of program by

moving back and forth in program execution2.

JavelinaCode, a web-based IDE, supports synchronized

visualization of static and dynamic aspects of Java

source code [26]. Pythontutor, proposed by PhilipGuo

visualizes the code by displaying the data structures

used [3]. Another visualization tool called

PlayVisualizerC (PVC) that dynamically visualizes the

code in terms of memory allocations has been proposed

by Ryosuke et al. in [27]. Visualization tools have been

developed to help students learn programming,

debugging and explore various possible ways of

writing programs. Games have been developed to

support students in program comprehension, various

concepts of programming such as function calls,

values, movement of messages and so on. To the best of

our knowledge, there is no visualization tool or a game

that can help programmers comprehend concepts of

pointers and their implementation in the program

without compilation of. Hence, in this paper, we

propose PointerViz to address this issue. PointerViz

aims to visualize the statements insitu IDE, before

compilation, rather than visualizing

2http://www.cs.princeton.edu/˜cos126/java_

visualize/

Page 119

https://github.com/AkhilaSriManasa/PointerViz
https://github.com/AkhilaSriManasa/PointerViz
http://www.cs.princeton.edu/~cos126/java_visualize/
http://www.cs.princeton.edu/~cos126/java_visualize/

Figure 1. Approach for design of PointerViz

them after compilation of the code unlike existing works

such as pythontutor [3] that visualizes the code after

compilation. Visualizing statements on the go will help

novice programmers in identifying and rectifying the

mistakes if any, at the early stages of the code, as a result

reducing the debugging efforts. Also, PointerViz displays

primitive visualization of pointers, which is identical to

the way budding programmers draw on paper, unlike

PVC [27] which displays memory locations and internal

details. This primitive representation can help novice

programmers relate better to their interpretations.

3. Design of PointerViz

PointerViz prototype is currently developed as an

extension3 to Google Chrome. As a proof of concept,

we developed PointerViz as a plugin to support an

online compiler and interpreter, ideone.com4, as shown

in Figure 1. However, our plugin can be extended to

support any other online coding playgrounds such 5

might motivate users to view representations and thus

comprehend the concepts better. As the first step of

design, we formulated regular expressions that portray

various ways in which pointers are defined. The regular

expressions used to match the statements written in the

code by users, are as follows:

as codepad.org and compileonline.com. In its current

form, PointerViz can also be added as an extension to

browsers other than Google Chrome, such as Mozilla

Firefox. Visualizations are generated using an open

source Javascript framework, vis.js6. Vis.js enables us

to dynamically visualize graphs within the browser by

facilitating manipulation of and interaction with

dynamic data and also customization of nodes. Vis.js

also helps in handling large amounts of dynamic data,

making it a suitable choice to generate visualizations in

coding environments which involve considerably large

amounts of dynamic data.

PointerViz is designed to support novice

programmers get a better view of pointer data structures.

It provides interactive visualization to the users. The

floating representations of links among various nodes

3PointerViz can be installed on Mozilla Firefox as well.
4https://ideone.com/
5http://codepad.org/
6https://visjs.org/

Regular expression [A] points to pointer declarations

alone, where in the pointers point to a garbage value.

Statements in which pointers are assigned NULL values

are recognized by Regular expression [B]. Regular

Regular expression [A]:
/[a-z]+\ *\ ([a-zA-Z$_][a-zA-Z0-9$_]*)\;/gm;
recognizes examples such as : int *p;

Regular expression [B]:
/[a-z]+\ *\ ([a-zA-Z$_][a-zA-Z0-9$_]*)\ *=\

*null\;/gmi;
recognizes examples such as : int *p = NULL;

Regular expression [C]:
/[a-z]+\ *\ ([a-zA-Z$_][a-zA-Z0-9$_]*)\ *=
\ *\&\ ([a-zA-Z$_][a-zA-Z0-9$_]*)\;/gm;
recognizes examples such as : int *p = &a;

Regular expression [D]:
/[a-z]+\ ([a-zA-Z$_][a-zA-Z0-9$_]*)\

*\[\ *([0-9]+)\ *\]\;/g;

recognizes examples such as : int p[10];

Regular expression [E]:
/[a-z]+\ ([a-zA-Z$_][a-zA-Z0-9$_]*)\

*\[\ *([0-9]+)\ *\]\;/g;

recognizes examples such as : int p[9][10];

Regular expression [F]:
/[a-z]+\ **\ *([a-zA-Z$_][a-zA-Z0-9$_]*)\

*=\ *\"([a-zA-Z0-9$_]+)\"\ *;/gm;
recognizes examples such as : char *p="test";

Regular expression [G]:
[a-z]+\ *([a-zA-Z$_][a-zA-Z0-9$_]*)\ *\[\

*([0-9]+)\ *\]\ *\=\ *((\{('([[a-z]|[A-Z]|

[0-9]+|[$_]])' *\,*)*\})
|(\{(([0-9]+)\ *\,*)*\}));/gm;

recognizes examples such as : int p[2]={1,2};

Regular expression [H]:
/[a-z]+\ *([a-zA-Z$_][a-zA-Z0-9$_]*)\ *\[\

*([0-9]+)\ *\]\ *\[\ *([0-9]+)\ *\]=\

*((\{('([[a-z]|[A-Z]|[0-9]+|[$_]])'

\,)*\})|(\{(([0-9]+)\ *\,*)*\}));/gm;
recognizes examples such as :

char p[2][3]={'a','b','1','d','c','2'}

Page 120

https://ideone.com/
https://ideone.com/
http://codepad.org/
http://codepad.org/
https://visjs.org/

expression [C] recognizes statements in which the

pointers are assigned the address of a variable. Arrays

of a given size can be obtained from Regular expression

[D]. Two dimensional arrays of given row and column

sizes are recognized by Regular expression [E]. Pointers

to strings are recognized by Regular expression [F].

One dimensional arrays whose elements are defined are

recognized by Regular expression [G] and 2D arrays

whose elements are defined at the time of declaration

are recognized by Regular expression [H].

For every regular expression that has been

formulated, a function is defined to generate the

corresponding visualization. Every visualization is a set

of nodes with connections between them that are

represented using edges. Node shapes are defined in

functions in a way, such that they convey the semantic

meaning of statements written by the user. The

difference in address space between nodes is also

represented in by a numeric value between the nodes,

representing the number of bytes. These nodes and

edges are passed as a dataset to previously stated

visualization framework, vis.js to render visualizations.

Functions take parsed tokens as inputs and verify if

they match any of the defined regular expressions. They

return options of shapes, nodes and edges in the form of

data. The function in script below deals with statements

of the form defined in Regular expression [A].

Definitions for Edges, nodes and shape options are

shown in the script below considering Regular

expression [A] as an example, where nodes are defined

to be displayed as circles and edges as arrows.

Variables and pointers are defined to be displayed as

circles and arrays are represented as rectangular boxes.

Visualization is updated regularly at the end of every

statement. Code is processed in the form of tokens,

which are fed into each of the pattern recognizing

functions. The function which contains matching

regular expression is executed. New patterns that are

not defined previously can easily be added, by defining

new functions the newly defined patterns, making it

easy to extend this plugin from a developer’s

perspective.

4. Working of PointerViz

The main aim of PointerViz is to display the

references of pointer data structures as used in the code

written by the user. Workflow of PointerViz is a seven

step mechanism, as shown in Figure 2.

• Step 1: User enters a statement in desired

programming language among C or C++ in the

text space provided by ideone.com, as the current

prototype is being tested forideone.com.

• Step 2: Tokens are extracted from these

statements and are considered as individual

statements. Token extraction is done with help of

pointerViz.js script that filters out statements by

semi colons used. Even if users enter various

statements in the same line, they can be separated

out by considering semi colon symbols.

• Step 3: Extracted tokens are passed to

pointerViz.js file, which forms the basis of plugin.

Functions written in the script process these

tokens and compare them with regular

expressions which are defined apriori.

• Step 4: The pointerViz.js file generates nodes

edges based on the matched regular expressions.

It then renders shapes corresponding to these

regular expressions, as defined in each function.

• Step 5: Resulting nodes and edges are passed to

vis.js framework to produce results by processing

them. It provides overlays for the same as

mentioned in the pointerViz.js file.

size: 30,

font: { size: 30,
multi: true

},
borderWidth: 2,
shadow:true

},

edges: {
width: 3,
}

};

const identifier = m[1];
const nodes = [

{id:0, label: identifier,

group: "0", title: code},
{id:2, shape: 'dot',

label: "Garbage"}

];
const edges = [

{from: 0, to: 2, arrows: 'to'}

];
const options = {

nodes: {

shape: 'circle',

function ptr_type1(code) {

const regex_1 =/[a-z]+\
([a-zA-Z$_][a-zA-Z0-9$_])\;/gm;

const m = regex_1.exec(code);
const identifier =m[1];

.

.
const data = {

nodes: nodes,edges: edges};
return [data, options];

}

Page 121

Figure 2. Stepwise Working of PointerViz

• Step 6: Results are produced in the form of

visualizations based on the code entered by user.

• Step 7: The results obtained in the previous step

are displayed to the user in the space provided

below the existing text space. Users are provided

with facilities to change orientations of the

figures and also to view code that resulted in

creation of the node by hovering on the first

node.

For each line entered by the user on the console

provided, PointerViz compares the statement with

predefined regular expressions. For a correct match, the

shapes and their relations are displayed. These shapes

help novice users to differentiate among various types

of pointer declarations. The pointers are visualized

using circles with arrows emerging from these circles.

These arrows point to the referenced variables as per

the identified tokens. The shapes used to represent

these data structures contain respective variables that

have been used by users in their code for better

readability.

Semi colons are used as delimiting symbols to

separate tokens in monolithic code. As we have

implemented PointerViz for programming languages

like C and C++, it identifies next line or statement by

semi colon. As new statements are entered, new

visualizations with respect to those statements are

generated and displayed to the user. Visualizations of

previously entered statements are maintained to help

users revisit those structures instead of re-writing the

same statements. Visualizations are done in First Come

First Display pattern i.e., visualizations of latest

statements are displayed at the bottom, similar to push

operations in queue. Users can select and drag nodes in

the displayed visualizations to alter their orientation.

5. User Scenario

Suppose Veda is a novice programmer working on

C programming language and she wishes to learn the

how pointers refer to various variables in the program.

She then visits ideone.com, an online coding

playground, selects C as the language she wishes to

code.

• Case 1: She starts typing the first statement:

i n t * p ;

Visualization of this statement is displayed. She

then hovers on the node p displayed in the

visualizations. The code that resulted in creation

of node p is displayed above this node as shown

in Figure 3.

Figure 3. Visualization of code for Case 1

• Case 2: She writes another statement in addition

to the previous statement resulting in the

following code

i n t * p ;

i n t * q = NULL;

i n t * s = &a ;

A visualization of the statement is displayed with

s as a circular node and an arrow originating from

this node to another circular node a as shown in

Figure 4. Also, the statement where a pointer is

assigned a NULL value is represented with a

circular node q pointing to another circular node

having the value as NULL. These statements are

visualized and displayed below the previous

statement as shown in Figure 4.

Page 122

Figure 4. Screenshot of PointerViz showing

visualization of code for Case 2

• Case3: Veda adds another statement that

declares an empty array of size five.

i n t p [5] ;

Veda can view visualization of the statement by

scrolling down the page as in Figure5. The

difference between memory address of one

element of the array to the next element is

represented with the numeric value of number of

bytes that differ, on a line between the elements.

Since the entered array is an integer array, each

element occupies a memory of 4 bytes and hence,

memory locations of consequent elements differ

by 4 bytes, as indicated between the nodes in

Figure 5.

Figure 5. Visualization of code for Case 3

• Case 4: When Veda writes a statement with a

two dimensional character array of two rows and

three columns.

char p [2] [3] ;

Veda can view visualization on the page as in

Figure 6. Since, the array is a character array,

each element of the array occupies 1 byte in the

memory and hence, it indicates that one element

occupies the memory location that is equal to

memory location of the preceding element+1.

Figure 6. Visualization of code for Case 4

• Case 5: Veda, then writes a statement

representing a pointer to string:

char *p = "moksha";

The above statement is then displayed to Veda as

shown in Figure 7, where the pointer variable p

points to the given string and stores the address

of the first character in the string (m in this

example).

Figure 7. Visualization of code for Case 5

• Case 6: Veda writes another statement that

defines a character array of size3.

i n t p [3] = { ' a ' , ' s ' , 'm ' } ;

Visualization of the above statement is displayed

as shown in Figure 8.

• Case 7: Visualization of a two dimensional array

defined at the time of declaration as given below,

is displayed as shown in Figure 9.

i n t p [2] [3] = { 1 , 3 , 5 , 7 , 9 , 2 } ;

Page 123

Q1: How easy was it to use PointerViz interface?

(1=very easy, 5=very difficult)

Q2: PointerViz has visualized pointer data

structures clearly and correctly. (1=strongly

agree, 5=strongly disagree)

Q3: PointerViz has helped me in learning

about various ways of usages of pointer data structures.

(1=strongly agree, 5=strongly disagree)

Q4: PointerViz has kept the whole experiment

interesting and informative. (1=strongly agree,

5=strongly disagree)

Q5: I will recommend PointerViz to my peers.

(1=strongly agree, 5=strongly disagree)

Figure 8. Visualization of code for Case6

Figure 9. Visualization of code for Case7

6. Evaluation

To evaluate PointerViz, we have conducted a user

experience study with 40 volunteers, in the age group

of 18-20 years, from various universities. The

participants were asked to install our PointerViz plugin

as an extension to Google Chrome browser, on their

personal desktops or laptops. They were also provided

with a slide-show depicting the procedure to install

PointerViz, a sample working video of the plug-in and

few sample statements that contain pointers, which

served as a basic tutorial. They were then asked to

write code that involved snippets containing pointers

usingideone.com. The participants were suggested to

view and verify visualizations displayed based on the

code that they have written. A user survey has been

conducted with the help of a five point Likert Scale. A

questionnaire as provided in Table 1, in which each

question has to be rated on a scale of 1 to 5, has been

sent to volunteers to assess their experience and

evaluate PointerViz.

7. Results

As reported in Figure 10, PointerViz had a good

user-friendly interface (83% in Q1). In Q2, about

Table 1. Questions in survey using a 5-point Likert

Scale.

82% of participants have agreed that PointerViz has

visualized the statements clearly and correctly. The

ratings in Q3 and Q4 indicate that PointerViz has helped

about 77% of participants learn about various ways of

using pointers and that the experiment has been

considerably interesting (80% in Q4). However, they

have also suggested increasing the scope of

visualization to various definitions of pointers. In Q5,

most of the participants have agreed that they would

recommend PointerViz to their peers (83%).

8. Discussion and Limitations

The core idea of this paper is to apply the concept

of visualization to aid users in understanding critical

concepts in programming languages. One of the critical

aspects as identified by researchers is pointers [12].

PointerViz prototype is a first step towards supporting

critical programming concepts through visualization. In

order to do an in-line visualization of code, the current

implementation of the tool uses lexical analysis and

parsing at statement level instead of block level. We

have limited the scope of PointerViz to understand

individual statements and visualize the same. We shall

hence extend PointerViz to support analysis of

complete code considering relations among the

statements in code in the future versions. While we

initially planned to map understanding pointers with

different levels of Bloom’s taxonomy, we limited our

scope to basic concepts in the current version.

While the idea seems to be simple, we aim to extend

this to support visualization of pointers in cases where

Page 124

Figure 10. Results of User Survey Questionnaire

pointers deal with various programming concepts such as

use of pointers in a function, array of pointers, linked lists

and use of pointers in user defined data types such as

structures. Though the current prototype focuses only on

visualizing code statement wise, based on the feedback
we received, PointerViz could help novices get a better

understanding of the pointers and references.

9. Conclusion and Future Work

In this paper, we have introduced PointerViz to

visualize pointers, as a prototype extension to Google

Chrome web browser that augments ideone.com. As

pointers are considered to be one of the critical aspects

of learning programming, our work aims to support

novice programmers learn better [12,1]. PointerViz

prototype has visualized code written by users upto a

decent level of satisfaction, owing to 82% of

participants willing to recommend this plugin to their

peers. PointerViz can easily be extended to support other

online coding platforms as well. As reported by survey

participants, one most important suggestion is to extend

PointerViz for other usages of pointers such as linked

lists and doubly linked lists. We plan to extend the

plugin to support multiple scenarios of pointers pointing

to pointers, array of pointers. We shall also extend the

plugin to include display of timely visualizations of

code blocks. We see this work as a first step towards

improving program comprehension through

visualization that could help novice programmers.

Acknowledgements

We thank all the volunteers for their valuable time

and honest feedback that helped us in evaluating

PointerViz.

References

[1] Y. Bosse and M. A. Gerosa, “Why is programming so
difficult to learn?: Patterns of difficulties related to
programming learning mid-stage,” ACM SIGSOFT
Software Engineering Notes, vol. 41, pp. 1–6, 01 2017.

[2] A. Luxton-Reilly, E. McMillan, E. Stevenson,
E. Tempero, and P. Denny, “Ladebug: an online tool to
help novice programmers improve their debugging
skills,” in Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer
Science Education, pp. 159–164, ACM, 2018.

[3] P. J. Guo, “Online python tutor: embeddable web-based
program visualization for cs education,” in Proceeding of
the 44th ACM technical symposium on Computer science
education, pp. 579–584, ACM, 2013.

[4] S. H. Kim and J. W. Jeon, “Programming lego
mindstorms nxt with visual programming,” in Control,
Automation and Systems, 2007. ICCAS’07. International
Conference on, pp. 2468–2472, IEEE, 2007.

[5] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and
N. Rusk, “Programming by choice: Urban youth
learning programming with scratch,” in Proceedings of
the 39th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’08, (New York, NY, USA),
pp. 367–371, ACM, 2008.

[6] A. Marron, G. Weiss, and G. Wiener, “A decentralized
approach for programming interactive applications with
javascript and blockly,” in Proceedings of the 2nd edition
on Programming systems, languages and applications
based on actors, agents, and decentralized control
abstractions, pp. 59–70, ACM, 2012.

[7] M. Muratet, P. Torguet, J.-P. Jessel, and F. Viallet,
“Towards a serious game to help students learn computer
programming,” International Journal of Computer
Games Technology, vol. 2009, p. 3, 2009.

[8] C. North and B. Shneiderman, “Snap-together
visualization: can users construct and operate
coordinated visualizations?,” International Journal of
Human-Computer Studies, vol. 53, no. 5, pp. 715–739,
2000.

[9] E. L. Glassman, T. Zhang, B. Hartmann, and
M. Kim, “Visualizing api usage examples at scale,” in
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, p. 580, ACM, 2018.

[10] B. W. Kernighan and D. M. Ritchie, The C programming
language. 2006.

[11] A. D. Robison and P. F. Dubois, “C++ gets faster for
scientific computing,” Computers in Physics, vol. 10,
no. 5, pp. 458–462, 1996.

[12] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A
study of the difficulties of novice programmers,” Acm
Sigcse Bulletin, vol. 37, no. 3, pp. 14–18, 2005.

[13] S. Bassil, R. K. Keller, et al., “Software visualization
tools: Survey and analysis.,” in IWPC, pp. 7–17, 2001.

[14] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning
barriers in end-user programming systems,” in 2004
IEEE Symposium on Visual Languages-Human Centric
Computing, pp. 199–206, IEEE, 2004.

[15] A. Scott, M. Watkins, and D. McPhee, “E-learning for
novice programmers; a dynamic visualisation and
problem solving tool,” in Information and
Communication Technologies: From Theory to
Applications, 2008. ICTTA 2008. 3rd International
Conference on, pp. 1–6, IEEE, 2008.

Page 125

[16] B. Broll, A. Le´deczi, P. Volgyesi, J. Sallai, M.Maroti, A.
Carrillo, S. L. Weeden-Wright, C. Vanags, J. D. Swartz,
and M. Lu, “A visual programming environment for
learning distributed programming,” in Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer

Science Education, pp. 81–86, ACM, 2017.
[17] A. Vahldick, A. J. Mendes, and M. J. Marcelino, “A

review of games designed to improve introductory
computer programming competencies,” in Frontiers in
Education Conference (FIE), 2014 IEEE, pp. 1–7, IEEE,
2014.

[18] S. Leutenegger and J. Edgington, “A games first approach
to teaching introductory programming,” in ACM SIGCSE

Bulletin, vol. 39, pp. 115–118, ACM, 2007.
[19] M. A. Miljanovic and J. S. Bradbury, “Robot on!: a

serious game for improving programming comprehension,”
in Games and Software Engineering (GAS), 2016
IEEE/ACM 5th International Workshop on, pp. 33–36,
IEEE, 2016.

[20] M. A. Miljanovic and J. S. Bradbury, “Robobug: A serious
game for learning debugging techniques,” in

Proceedings of the 2017 ACM Conference on
International Computing Education Research, pp. 93–
100, ACM, 2017.

[21] A. M. Cheadle, A. Field, J. Ayres, N. Dunn, R. A. Hayden,
and J. Nystrom-Persson, “Visualising dynamic memory

allocators,” in Proceedings of the 5th international
symposium on Memory management, pp. 115–125,
ACM, 2006.

[22] M. Ko l̈ling, B. Quig, A. Patterson, and J.
Rosenberg, “The bluej system and its pedagogy,”

Computer Science Education, vol. 13, no. 4, pp. 249–268,
2003.

[23] C. Huizing, R. Kuiper, C. Luijten, V. Vandalon, et al.,
“Visualization of object-oriented (java) programs.,” in
CSEDU (1), pp. 65–72, 2012.

[24] S. Halim, “Visualgo,” Dostupne ́net/en, 2015.
z:¡ https://visualgo.

[25] A. Moreno and M. S. Joy, “Jeliot 3 in a demanding

educational setting,” Electronic Notes in Theoretical
Computer Science, vol. 178, pp. 51–59, 2007.

[26] J. Yang, Y. Lee, and D. Hicks, “Synchronized static
and dynamic visualization in a web-based programming
environment,” in Program Comprehension (ICPC), 2016
IEEE 24th International Conference on, pp. 1–4, IEEE,
2016.

[27] R. Ishizue, K. Sakamoto, H. Washizaki, andY. Fukazawa,

“Pvc: Visualizing c programs on web browsers for
novices,” in Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, pp.245–
250,ACM,2018.

Page 126

View publication stats

https://www.researchgate.net/publication/339028160

 Ï utåz Ï üÁÆ: EÀ™Áuß: úufiNˇÁÃÏ úueoÊ ÀÆÁoΩ -
<Nzˇv©§¿\‚uƒæÁuƒ˘Á¬ÆÀszå ßÁ∫oyÆ∆ÁzáXZÁfizm EÁ

úØÁ∆oÁz∫u˚Ã“œÁÁoΩ ƒ z|•Æ: Eƒu∆…b: ü«◊Á: Ã™Áu“o:> Fuo @
<ÆÏ∫zNˇÁqm:> FnÆÁPÆÊ ¬zQ™Ω EuáNwˇnÆ uƒußëÁz Ï ™ÁÜÆ™z Ï üYÁ∫:
YYÁ| Y \ÁoÁ §ÛáÁ @ \åÁåÁÊ üuoÀúãtå™‚ Euú EuƒÀ™∫myÆ™‚ @
Eåzå NˇÁ∫mzå §˜åÁÊ \åÁåÁÊ ™åuÃ ÃÊÀNwˇoÊ üuo, uƒu∆…Æ √ÆÁNˇ∫mÊ
üuo NˇÁ{oÏNˇ™‚ Euú GnúëÁ™‚ @

Iˇu ∫Á\úÁzúbåÁ™Nˇ: Nzˇv©§¿\‚uƒæÁuƒ˘Á¬ÆÀÆ ∆ÁzáXZÁfi: @
Ã: uƒ˘ÁƒÁu∫áz: uåu™Ê ÆÊ ∆Ázáü§ãáÊ u¬uQoƒÁåΩ Ã: otyÆzå
uƒæÁuƒ˘Á¬Æzå EWïyNwˇo: @ oÀÆ Lƒ üÃÁ∫: üYÁ∫: gÁ.
Iˇu ∫Á\úÁzúbƒÆz|m Nwˇo: @ oÀÆ ∆Ázáü§ãáÀÆ u∆∫ÁzåÁ™ EvÀo -
<In Panini We Trust: Discovering the Algorithm for Rule

Conflict Resolution in the Astadhyayi> (ƒÆÊ úÁumåÁ{
uƒæÁuÃ™: - E…bÁÜÆÁ´ÆÁÊ uåÆ™uƒ∫ÁzáÀs¬z Ï Ã™ÁáÁåÀÆ
üuN¿ˇÆÁÆÁ: Eãƒz m©ÁΩ) Fuo @

Efi Gu®uQoÁ <E…bÁÜÆÁÆy> √ÆÁNˇ∫m∆ÁÀfiyÆ: Nˇ≥Áå üÁYyå:
T¿ãs:, Æ≥Á úÁumuå™“u |mÁ ∫uYo: @ T¿ãszDvÀ™åΩ ÃÊÀNwˇoßÁ ÁÆÁ:
uåÆ™Á: ÃÓfiøúzm uå§ÚÁ: Ãvão @ LoÁuå ÃÓfiÁum GúÆÏ[Æ ÃÁáÏ-
∆£tÁåÁÊ rÁåÊ üÁõoÏÊ ∆MÆ™Ω @ ÃÁáÏ∆£tÁåÁÊ uå™Á|mNˇÁÆ|™zƒ <üuN¿ˇÆÁ>
Fuo åÁ©åÁ ÃÓXÆoz @ ÃÓfi{: §˜uå NˇÁÆÁ|um uƒu“oÁuå ßƒvão @

ƒÆÊ \Áåy™: Æo‚ Ãƒz| ÁÊ útÁåÁÊ NˇÁuYo‚ üNwˇuo:, Nˇ≥Áå ünÆÆ: Y

IÿuÊºç\�çz�bÄ®|Ë®
Æçz��¤��Ë® Äwðç�o:

☛ Y{oãÆ: ÃÏ ¬≤Ïˇlgy
Email : chaitanya.lakkundi@gmail.com

L
<ƒÆÊ õÁÁumãÁÁ{

uƒæÁuÃ™:...> FnÆÀÆ

∆ÁzÜÁü§ãÜÁÀÆ uƒ Æz

§ÛÜÁÁ YYÁ| »ÓÆoz @

ƒÁoÁ|õÁufiNˇÁÃÏ EuõÁ

EãÁzNˇuƒÜÁÁ: ƒÁoÁ|:

üNˇÁu∆oÁ: @ LoÀÆ

Ãƒ|ÀÆ ÆoΩ ™Ó¬Ê oÀÆ

EÁ∆Æ: Nˇ:, Nˇ≥Á

ÃÁ∫: Fuo ÀsÓ¬oÆÁ

uƒƒwmÁzuo EÆÊ ¬zQ: @

Ã©ßÁ mÃãtz∆:
¢zÿ¤ÀÄºy - 2023

6

ßƒuo Fuo @ GtÁ“∫mÁs˙ \ÁåÁuo Fuo øúÊ üÆÁÃ: uƒu“o: Fuo oÏ ü§ãáúeåÁoΩ EƒT©Æoz @
ú≈ÆÁ™ @ \ÁåÁuo Fuo øúÊ ÃÁáåyÆÊ Yzo‚, rÁ Fuo otyÆ: üÆÁÃ: öÁUÆ: Lƒ @ ú∫ãoÏ ofi úu∫úÓm|oÁ
áÁoÏÊ ÀƒyNwˇnÆ ofi uoú‚ Fuo ünÆÆÊ uƒáÁÀÆÁ™: @ rÁ EvÀo uNˇ™Ω Fuo Nˇ≥Áå ü«◊Á: √ÆÁNˇ∫mrÁåÁÊ úÏ∫o:
+ uoú‚ Fuo vÀsoz ofi <rÁ>áÁoÁ{ Nˇ≥Áå uƒNˇÁ∫: GúvÀso: ßƒuo @
ßƒuo, Æzå <\ÁåÁuo> Fuo Evão™Ê útÊ uå…ú˘oz @ ∫Á\úÁzúb: Eußü{uo - NˇÁnÆÁÆåúo±Áu¬-
F|–≈ÆÁÊ üuN¿ˇÆÁÆÁÊ üÁáÁãÆzå NˇÁÆ|fiÆÊ Ã©ßƒuo @ üßwuouß: ƒ{ÆÁNˇ∫m{: EÀÆ ÃÓfiÀÆ Ãƒ|sÁ tÁz úÓm˙
oÁuå NˇÁÆÁ|um Y - 1. åÓoåƒm|ÀÆ EÁT™: 2. √ÆÁPÆÁåÊ Nwˇo™‚ Fuo @ Eo Lƒ Ã: G∫ƒuo|uß:
ƒm|ÀÆ ¬Ázú: 3. ƒm|ÀÆ uƒNˇÁ∫: (úu∫ƒo|å™‚) ƒ{ÆÁNˇ∫m{: NwˇoÁå‚ T¿ãsÁå‚ uÃÚÁãoÁå‚ Y
Yzuo @ uå∫ÁNˇ∫Ázuo @ E…bÁÜÆÁÆy™‚ Euou∫XÆ EãÆo‚ Ãƒ˙

úÁumåyÆ{: ÃÓfi{: NÏˇfi EÁT™:, NÏˇfi ¬Ázú:, NÏˇfi ü™Ámnƒzå å EWïyNˇ∫Ázuo EÆÊ \å: @ Eo: ÀƒÀÆ
Y uƒNˇÁ∫: Fuo uƒáÁåÊ uN¿ˇÆoz @ ÆtÁ LNˇvÀ™å‚ ÀƒoãfiÊ √ÆÁPÆÁåÊ NˇoÏ˙ üÆnÆoz ozå @
Às¬z ÃÓfi˚Æzå NˇÁÆ|˚ÆÊ uƒu“oÊ ßƒuo otÁ oã™oz ú∫∆£tÀÆ Es|: - <tuqmßÁT:> Fuo @
Ã“\oÆÁ ∆WîÁ Gnú˘oz Æo‚ Nˇo∫oΩ NˇÁÆ˙ Eo: tuqmßÁTz Æo‚ NˇÁÆ˙ üÁõoÊ ooΩ üƒo|åyÆ™Ω
Nˇ∫myÆ™‚ ? Fuo @ LoÁ–∆Áå‚ üÃWïÁå‚ úu∫“oÏ˙ Fuo oÀÆ üuoúÁtå™Ω @ rÁ + uo FnÆvÀ™å‚ Às¬z
úÁumuå™“u |mÁ LNÊˇ úu∫ßÁ ÁÃÓfiÊ ∫uYo™‚ @ oo‚ Æut LNÊˇ NˇÁÆ˙ <rÁ> FnÆfi üÁõoÊ, u˚oyÆÊ NˇÁÆ˙ <uo>
ÃÓfi™vÀo - <uƒüuo záz ú∫Ê NˇÁÆ|™Ω> Fuo @ FnÆfi üÁõoÊ ou“| u˚oyÆÊ NˇÁÆ|™zƒ üƒo|oz Fuo

E…bÁÜÆÁ´ÆÁ™Ω E…bÃÏ EÜÆÁÆz Ï uƒßOˇÁuå otyÆ: EÁ∆Æ: @ ÆoÁz u“ <uo> Fuo tuqmßÁTz
ÃÓfiÁum N¿ˇ™zm ∫uYoÁuå @ ofi uƒüuo záz (˚ÆÁz: uƒ˘™Áå™‚ @
NˇÁÆ|ÆÁz: ÆÏTúo‚ üÁõoÆÁz:) ú∫ÃÓfiÀÆ NˇÁÆ˙ ƒÀoÏo: ú∫∆£tÀÆ §“ƒ: EsÁ|: Ãvão @ ofi
Nˇ∫myÆ™‚ Fuo uåÆ™: @ EsÁ|o‚ ÆÀÆ ÃÓfiÀÆ <tuqmßÁT:> FnÆuú Es|: E…bÁÜÆÁ´ÆÁ™‚ §Ûfi
N¿ˇ™ÁWî: EuáNˇ: ƒo|oz oÀÆ üƒwu: ßƒuo @ EvÀo Lƒ @ ú∫ãoÏ üNwˇoÃÓfiz Nˇ: Es|:
ú∫∆£tÀÆ <G∫ƒuo| ÃÓfi™‚> FnÆs|: úÁ∫©úu∫N{ˇ: úu∫T¿“yo√Æ: Fuo oÏ uåmz|o√Æ™‚ @ oo‚ uåmz|oÏÊ
ƒ{ÆÁNˇ∫m{: ÀƒyuN¿ˇÆoz @ §“ƒ: ∆£tÁ: úu∫∆y¬åyÆÁ: @ ∫Á\úÁzúbÀÆ

∫Á\úÁzúbƒÆz|m LoÀÆ ÃÓfiÀÆ EƒT™åz ™“Áå‚ √ÆÁPÆÁåÀÆ ÀƒyNˇ∫mÁoΩ Æut ÃÁáÏ∆£tÁ: Lƒ

Iˇu ∫Á\õÁÁzõÁb:, E…bÁÜÆÁÆyÀsÜÁÁoÏõÁÁeÃ©§ÚÊ oÁ¬õÁfiÊ Y

Ã©ßÁ mÃãtz∆:
¢zÿ¤ÀÄºy - 2023

7

uå…úëÁÁ: ßƒzÆÏ: ou“| Ã: Es|: ÀƒyNˇÁÆ|: ÀÆÁoΩ Nˇ≥Áå Eú∫: úq: ∫Á\õÁÁzõÁb™“ÁztÆzå
Eƒ≈Æ™zƒ, EãÆsÁ oÏ ooΩ √ÆÁPÆÁåÊ ÀƒyNˇÁ∫Á“˙ å GúÀsÁuúo: @ Ã: ƒtuo - <ÃWïmNˇÁs|™Ω Fo:
ßƒzoΩ @ LoÁ–∆z üÃWïz NˇsÊ √Æƒ“∫myÆ™Ω Fuo üÆÁz\å™Ω EvÀo> Fuo @ Æ: NˇÁzDuú uƒuá: N¿ˇ™: ƒÁ
EÊ∆Ê ßÁ∫oyÆú∫©ú∫ÁToÊ uNˇØÁå ÃÏßÁu oÊ u åÆ™Ã™vãƒo: Æut ÀÆÁo‚ ou“| oÀÆ
rÁúÆuo @ ooΩ Y Fns™Ω - ÃWïmNˇÁãƒÆ: NˇoÏ˙ ∆MÆ: Lƒ @ ú∫ãoÏ LotyÆÊ

ÆÏuOˇÆÏOÊˇ ƒYÁz T¿ÁÿÊ §Á¬Átuú ∆ÏNˇÁtuú @ ™o™‚ Eƒ¬©£Æ EÃÁáÓuå øúÁlÆzƒ uÃÚ∞vão
ÆÏMnÆÆÏOÊˇ ƒYÀnÆÁ[ÆÊ ÃÁqÁtuú §w“Àúoz: @@ Fuo NˇÁ∫mo: Àú…bÊ ÆoΩ Æãfi˚Á∫Á Euú EÃÁáÓãÆzƒ

Fuo @ øúÁum uå…úÁ˘ãoz Fuo @
FtÁåÎ ÃÓfiÁs˙ úÏå: EƒTXZÁ™ @ úÁ∫©úu∫Nˇ™oz EãooÁz TnƒÁ <ÆsÁvÀsoÊ oã™o™‚ EWïyNˇoÏ˙ å{ƒ

Æfi ˚ÆÁz: oÏ¡Æ§¬ƒoÁz: (Ã™Áå§¬ÆÏOˇÆÁz:) ∆MÆoz> Fuo uåmz|o√ÆÊ ßƒuo EåãÆTuoNˇoÆÁ @
ÃÓfiÆÁz: üÁvõo: ÆÏTúo‚ ßƒuo ofi{ƒ uƒüuo zá: @ LƒÊ ÃnÆuú Æz EÊ∆Á: ∫Á\úÁzúbƒÆ|ÀÆ ü§ãáÁo‚
ú∫ãoÏ ∫Á\úÁzúbÀÆ ™oÊ oÏ - Æfi MƒÁuú LNˇvÀ™å‚ ÀƒyNˇÁ∫ÆÁzSÆÁ: ßƒzÆÏ: oz “ÊÃqy∫ãÆÁÆzå
ÃÁzúÁåz §˜åÁÊ ÃÓfiÁmÁÊ üÁvõo: ußëÁÀs¬z Ï ßƒuo Eƒ≈Æ™zƒ T¿ÁÿÁ: @
(Æfi ÀsÁuåå: EåzNzˇ Ãvão) ofi uƒüuo zá:, ofi EÁtÁ{ EÀ™Áuß: EƒTão√ÆÊ Æo‚ EÀÆ ÃÓfiÀÆ
Y tuqmßÁTz uƒ˘™ÁåÀÆ ÀsÁuåå: NˇÁÆ˙ Nˇo|√Æ™‚ (<uƒüuo záz ú∫Ê NˇÁÆ|™Ω> Fuo ÃÓfiÀÆ) EƒT™åz
Fuo @ √ÆÁPÆÁåz Y úÁ∫©úu∫NˇÁmÁÊ tÁz : å{ƒ EÁÃyo‚ @ FÆÊ

∫Á\úÁzúbzå ÀƒÀÆ ü§ãáz úØÁÁ∆tuáNˇÁuå ƒÀoÏo: Ã™ÀÆÁ Euú å @ ∫“ÀÆ™uú å @
GtÁ“∫mÁuå uåøuúoÁuå, Æfi oã™oz ÃÁáÏ∆£t: ƒ{ÆÁNˇ∫mÁ: oÏ ™ÏuåfiÆÀÆ üÁ™ÁlÆ™‚ EWïyNÏˇƒ|vão @
uå…úëÁÁz ßƒuo @ ÀsÁåz ÀsÁåz ozå EãÆz ÁÊ ÃÓfiÁmÁ™‚ ofi úÁumuå:, NˇÁnÆÁÆå:, úo±Áu¬: Yzuo fiÆ:
Es|: Euú Æsz…bÊ Àƒ§ÏÚ∞Á úu∫ƒuo|o: Euú @ ™ÏåÆ: @ Loz ÁÊ ú∫©ú∫Á Lƒ <E…bÁÜÆÁÆyú∫©ú∫Á>
ou˚ Æz Nzˇ ÏuYo‚ Às¬z Ï ozå ÆÏOˇÆ: üÀoÏoÁ:, úÏå: Fuo GXÆoz @ EåÆÁ ¬Á{uNˇNˇÁåÁÊ ƒ{utNˇÁåÁÊ Y
Nzˇ ÏuYo‚ Y å{ƒ üÀoÏoÁ: @ ÃÁáÏ∆£tÁåÁÊ uÃuÚ: uN¿ˇÆoz @ E˘ oÁƒo‚ EÀÆÁ:

E˘nƒz §Ûuß: úÁ∫©úu∫Nˇúvlgo{: LoÀÆ √ÆÁNˇ∫mú∫©ú∫ÁÆÁ: Ã“œÁÁuáNˇƒ Á|um √Æoy-
ü§ãáÀÆ Ã™Á¬ÁzYå™‚ Euú NwˇoÊ ƒo|oz @ o{: tu∆|oÊ oÁuå @ ofi GnNwˇ…b{: uƒ˚uÙ: ™“u |uß: Y G˘™:
Æo‚ §Û Ï üÃWïz Ï EÃÁáÏ∆£tÁåÁÊ uå…úu: Euú Nwˇo: @ Ã™yYyåÁ: ÃWïoÁ: Y uÃÚÁãoÁ: üuo-
∫Á\úÁzúbÀÆ ™oÁåÏÃ∫mzå ßƒuo Fuo @ oz ÁÊ úÁutoÁ: @ Eo: FÆÊ ú∫©ú∫Á Ãƒ|sÁ üÁ™ÁumNˇy @
Ã™ÁáÁåÊ Y ü§ãá˚Á∫Á å{ƒ üÁõo™‚ @ ÃÊÀNwˇo- ofi úu∫…NˇÁ∫ÁutNÊˇ Nˇo|√ÆÊ Yzo‚ úÁ∫©úu∫NˇúÚnÆÁ
ßÁ∫nÆÁ: tuqmNˇmÁ|bNˇ∆ÁQÁ˚Á∫Á EÁÆÁzu\oÁÆÁÊ EáynÆ uƒtÏ : üm©Æ oz ÁÊ Ã©™uoÊ Y ÀƒyNwˇnÆ
ÆÏƒuƒ˚t‚√ÆÁPÆÁå™Á¬ÁÆÁÊ »y™oÁ åy¬z∆§ÁzgÃ- Nˇo|√Æ™‚ @ ooΩ EååÏ…eÁÆ uN¿ˇÆ™Ám: üÆÁÃ:
ƒÆz|m uƒÀowoøúzm EåzNˇÁuå GtÁ“∫mÁuå uƒ˚¡¬ÁzNzˇ ™ÁãÆoÁÊ å üÁõåÏÆÁoΩ @
ütu∆|oÁuå, Æfi EÃÁáÓuå øúÁum uÃÚ∞vão @ uƒ˚¡¬ÁzNˇ™ÁãÆoÁ∫u“oÀÆ ¬Á{uNˇNˇ-üYÁ∫ÀÆ å
¬qÁuáNˇÁuå tÏ…bøúÁum åÓoå™oÀÆ ÀƒyNˇÁ∫zm uNˇ™uú ™Ó¡ÆÊ ÃÊÀNwˇoflÁzfiz @
Ã©ßƒvão Fuo ßÁÃoz @ Nˇy–∆z Ï Às¬z Ï oÀÆ
N¿ˇ™: ÃÁáÓuå øúÁum ÆXZuo, uNˇÆoy ƒÁ oÀÆ
√ÆÁvõo: FnÆÁtÆ: uƒ ÆÁÀoÏ ∆ÁzáåyÆÁ: @

Ã©ßÁ mÃãtz∆:
¢zÿ¤ÀÄºy - 2023

8

SOTagger - Towards Classifying Stack Overflow
Posts through Contextual Tagging

Akhila Sri Manasa Venigalla
Indian Institute of Technology

Tirupati, India
cs18m017@iittp.ac.in

Chaitanya S. Lakkundi
Indian Institute of Technology

Tirupati, India
cs18s502@iittp.ac.in

Sridhar Chimalakonda
Indian Institute of Technology

Tirupati, India
ch@iittp.ac.in

Abstract—There is an ever increasing growth in the use
of Q&A websites such as Stack Overflow (SO), so are the
number of posts on them. These websites serve as knowledge
sharing platforms where Subject Matter Experts (SMEs) and
developers answer questions posted by other users. It is
effort intensive for developers to navigate to right posts
because of the large volume of posts on the platform, despite
the presence of existing tags, that are based on technologies.
Tagging these posts based on their context and purpose might
help developers and SMEs in easily identifying questions
they wish to answer and also in identifying contextually
similar posts. To support this idea, we propose SOTagger
as a prototype plug-in for Stack Overflow to tag questions
contextually. We have considered SO data provided on
SOTorrent and automated the identification of 6 categories
of questions using Latent Dirichlet Allocation. We have also
manually verified relevance of these categories. Using these
categories and dataset, we have built a classification model to
classify a post into one of these six categories using Support
Vector Machine. We have evaluated SOTagger by conducting
a user survey with 32 developers. The preliminary results
are promising with about 80% developers recommending the
plugin to others.

Index Terms—Stack Overflow, Contextual Tagging, LDA

I. Introduction

Stack Overflow (SO) is one of the most frequently
used websites with about 11M visits every day. With a
user base of 10M users, about 7.3K questions are posted
per day. It comprises of about 18 million questions, of
which 71% are answered1. These questions correspond
to various technical categories, tools, libraries and are
tagged into atmost 5 of 54K tags2 present on the website.
This tagging is done based on their technical relevance
with the posted content and is used to organize posts
and thus help users to browse for questions and answers
concerning to particular topics such as javascript, jquery,
python and so on [1]. However, these tags don’t classify
questions based on the context in which they are asked.
The context would capture situations pertaining to con-
ceptual understanding, issue resolving and so on.

Recent studies have aimed at classifying questions on
SO based on their context and arrived at almost similar

DOI reference number: 10.18293/SEKE2019-067
1https://stackexchange.com/sites?view=list#traffic
2http://bit.ly/SONumTags

taxonomies of categories. They have used various tech-
niques such as K-NN clustering [2], automatic catego-
rization by topic modeling using LDA and MALLET [3]
and manual categorizations [1], [4]. Some of these stud-
ies have aimed to contextually categorize technology-
specific questions such as questions related to Android
application development [2] and mobile operating sys-
tems like Android, Apple and Microsoft Windows. How-
ever, existing tools do not categorize posts on SO plat-
form based on context. To this end, the contributions of
this paper are as follows:
• SOTagger3 - a prototype plug-in that classifies posts

on SO into six categories: Conceptual, Discrepancy,
Implementation, Error, Learning and MWE (Minimum
Working Example).

• Application of NLP techniques - Latent Dirichlet
Allocation(LDA) and Machine learning (ML) classi-
fier - Support Vector Classifier (SVC) to classify SO
posts.

• Evaluation of SOTagger with 32 professional devel-
opers and manual cross-verification of 100 posts.

II. RelatedWork

In the recent years, several studies have been done
to analyze posts on SO, which include analyzing de-
velopers’ area of interest based on questions asked [5],
analyzing and suggesting tags of the questions [2] [1]
[6] [7], identifying difficulties faced by developers [8],
identifying trending technological topics [9], and so on.
Researchers have classified posts on SO based on the
context by manually interviewing software developers.
In a survey conducted by Latoza et al., 179 professional
software developers were asked to identify hard-to-
answer questions pertaining to code that they solicit
wherein 371 questions were reported. They have man-
ually categorized them into 21 categories with 94 dis-
tinct questions, of which the 5 most frequently reported
categories were - Rationale, Intent and Implementation,
Debugging, Refactoring and History of code [10].

Studies have been conducted to investigate various
question categories based on the context in which they

3https://github.com/chaitanya-lakkundi/SOTagger

https://stackexchange.com/sites?view=list#traffic
http://bit.ly/SONumTags
https://github.com/chaitanya-lakkundi/SOTagger

were asked. Rosen et al. manually categorized 380 posts
on SO into 3 question categories based on the three in-
terrogative words- How, What and Why, corresponding to
three mobile operating system categories - Android, Apple
and Microsoft Windows [4]. Treude et al. have manually
classified 385 questions on SO into 10 categories - How to,
Decision Help, Discrepancy, Environment, Error, Conceptual,
Review, Non-Functional, Novice, Noise [1]. Although meth-
ods involving manual effort are necessary to capture
ground truth, we see a need to find better ways to scale
this approach such that automation is possible.

Elucidating further studies, Beyer et al. have proposed
7 question categories - API Change, API Usage, Concep-
tual, Discrepancy, Learning, Errors, Review by manually
classifying 500 SO Android posts and performed auto-
matic classification using supervised machine learning
algorithms with a precision of 88% [2]. Allamanis et
al. found 5 major question categories using LDA and
unsupervised machine learning algorithm [3].

Insofar as the development in methods of classification
is concerned, the research community has progressed
from significant manual studies to automating them
using machine learning algorithms and NLP techniques.
Contemporary tools such as EnTAGREC++ [6], TagCom-
bine [7] have been developed to provide tag suggestions
to users when they post questions on SO. These tools
suggest tags based on technologies involved in the post
content. The prototype plug-in we propose, SOTagger,
tags posts on SO based on their purpose or intent rather
than considering the technologies involved. Based on
the existing work on classifying posts [2] [1] [4] [3], we
propose a taxonomy to tag posts contextually.

III. Proposed Taxonomy

Posts can be classified using several NLP techniques
such as LDA, LSA, TF-IDF. However, inline with the
existing work, we followed LDA technique.

We present six question categories that we have de-
rived from existing studies and results obtained from
LDA topic modeling. As a result of LDA topic modeling
configured for 6 topics, we obtained 6 topics charac-
terized by keywords for each topic, along with the
weightage of keywords in every topic. Omitting the
technical terms and considering interrogatives, it has
been observed that Topic 0 comprises of discrepancy, Topic
1 contains error, Topic 2 contains how-to or implementa-
tion, Topic 3 contains learning, Topic 4 contains conceptual
and Topic 5 contains MWE keywords respectively, as
shown in Table I. These results obtained by applying
LDA on SO posts indicate the presence of contextual
categories in SO data. Comparing these results with the
existing taxonomy discussed by Beyer et al. in [2] and
other taxonomies presented in [1] [4] [3], we reorganize
few categories in the existing literature and arrive at
labelling five of these six topics as conceptual, discrep-
ancy, implementation, error and learning respectively. We

TABLE I
Taxonomy of Question Categories

S.No. Topics Keywords

1 Conceptual What is use/difference,
Is there a way, Is it possible[2]

2 Discrepancy doesn’t work, tried to,
have/facing problem, before upgrade
previous version [2]

3 Implementation How to implement [4] [3] [1]
4 Error Exception, error [2]
5 Learning suggest, tutorial,

where can I find [2]
6 MWE for this code, code tags

observed that many of the posts on SO contained code
snippets, which could indicate that users post questions
containing code to reproduce the bug they are facing.
Such code snippets serve as Minimum Working Examples
(MWE)4, which is proposed as another category MWE.
We observe this naming to be inline with work proposed
by Allamanis et al. [3]. Each post can be classified into
one or more of these six categories.

Fig. 1. Overview of Approach for SOTagger

IV. DesignMethodology

We followed a six step approach in designing a con-
textual classification model as shown in Fig 1.

Step 1 - Extract DataSet. To perform categorization
of SO posts, we downloaded Posts.xml file avilable on
SOTorrent5. We considered a subset of this file that con-
stituted 100K Stack Overflow posts under Body column
and filtered out questions based on PostTypeId column
that resulted in a dataset of 20K posts.

Step 2 - Data Preprocessing. Data present in Body
column whose PostTypeId = 1 was considered for pre-
processing. We considered English stop words provided
by NLTK library and omitted interrogative words from
the list of stop words keeping in view, the taxonomy pro-
posed. We processed the data for stop word, punctuation
removal and lemmatization using spaCy.

4https://stackoverflow.com/help/mcve
5https://zenodo.org/record/2273117

https://stackoverflow.com/help/mcve
https://zenodo.org/record/2273117

Fig. 2. A Snapshot of SOTagger

Step 3 - Latent Dirichlet Allocation Model. We
applied LDA to perform topic modeling. We primarily
created a dictionary of lemmatized words and then
created a corpus of these words with their frequency
of occurrence. Considering this corpus, we generated an
LDA model that categorizes given data into 6 topics.

Step 4 - Naming Topics. Based on existing taxonomies
in the literature [2] [1] [4] [3], we identified contextually
useful keywords in each of the 6 topics, and used them
to identify and name topics.

Step 5 - Append Labels to Dataset. The LDA model
provided us with a topic-document correlation matrix,
where document refers to content of one post. This ma-
trix contained probabilities of every identified topic for
each document. We then classified posts in the dataset
into topics based on the dominant topic from correlation
matrix which had the highest probability.

Step 6 - Prepare a Machine Learning model - Build
SVM Model. We applied various machine learning clas-
sification algorithms such as Linear SVC, Logistic Re-
gression, Multinomial Naive Bayes, Random Forest Classifier
to arrive at the best classification model on available
dataset with 75% train and 25% test data. We observed
that SVC was able to classify the given data set with
higher accuracy (78.5%) than other models. Based on
this, we designed SVC model and pipelined to Calibrat-
edClassifierCV to get prediction probabilities.

V. Development of SOTagger
This plug-in has been developed as an extension to

Google Chrome to support classification of posts on SO.
It tags posts on SO based on their context. SOTagger
reads SO posts on the page and extracts questions from
these posts which are fed into previously developed
ML classification models using SVM classification. This
model outputs the categories of specific posts along

with associated probabilities which are presented as tags
below the posts on SO platform.

A snapshot of SOTagger is shown in Fig 2 for a
sample post on SO. Tags corresponding to context of the
question are displayed below the post as shown in [D] of
Fig 2 and are arranged in decreasing order of probability.
The probability with which a post is tagged into each
of the displayed categories is represented by a bar as
depicted in [E] of Fig 2. According to SOTagger, this post
is classified as MWE category with highest probability.
As pointed in [B] of Fig 2, presence of code segment
justifies classification of the post into MWE category.
Presence of What keyword as highlighted in [A] of Fig
2, contributes to Conceptual tag, with a lesser probability
than MWE tag. is there phrase represented by [C] of Fig
2 contributes to Learning category, with least probability.

However, the keywords or phrases demonstrated in
Fig 2, are for the purpose of analyzing the correctness of
SOTagger, but are not the only basis for classification. Ac-
tual classification was based on NLP and ML techniques
that have been used in development of SOTagger.

VI. Evaluation and Results

We evaluated SOTagger by conducting a user survey
with 32 professional developers with a development
experience ranging from 2 years to 19 years.

The participants were asked to use SOTagger, navigate
to SO website and analyze the contextual tags added by
SOTagger. A user survey was conducted with the help
of five point Likert scale, containing a questionnaire as
provided in Table II.

Apart from user survey, we manually evaluated6 con-
textual tags of about 100 random posts on SO tagged
by SOTagger and obtained an accuracy of 77%. The

6https://git.io/fjC83

https://git.io/fjC83

results of our survey indicate, SOTagger had a good
user-friendly interface (82% in Q1). In Q2, about 85% of
participants have agreed that SOTagger has appropriately
tagged the posts. The ratings in Q3 and Q4 indicate
that SOTagger has helped about 80% of participants in
faster browsing of posts on SO and that the experiment
has been considerably interesting (81% in Q4). In Q5,
most of the participants have agreed that they would
recommend SOTagger to their peers (83%). .

TABLE II
Questions in survey using a 5-point Likert scale.

Q1: How easy was it to use SOTagger interface?

Q2: SOTagger has tagged SO posts
correctly based on their context.

Q3: SOTagger has helped me in quick browsing
of posts based on context.

Q4: SOTagger has kept the whole experiment interesting
and informative.

Q5: I will recommend SOTagger to my peers.

VII. Threats to Validity

We have manually examined top 20 posts based on
probability values in each of the 6 topics generated by
LDA technique to assign topic name. This could be in-
accurate considering limited number of posts examined.

To understand the accuracy of classification, we ran-
domly browsed 100 posts on SO. We realize that exami-
nation of 100 posts in total is not enough to get an overall
idea about the accuracy of classification. During the
creation of LDA model, we tweaked a few parameters
such as chunk size and number of passes which resulted
in different statistical distribution of topics. Some of the
distributions were imbalanced and biased towards one
particular topic. We selected those parameters which
resulted in a nearly Gaussian distribution. We assume
that LDA model which classifies data in Gaussian dis-
tribution performs better than other models. However,
initial results show that accuracy of trained LDA model
is around 70%, but with scope for experimenting with
other distributions. The machine learning model has
been trained on a dataset of 20K questions, however we
should consider a larger number of posts from SO to
improve our approach.

VIII. Conclusion and FutureWork

In this paper, we presented SOTagger, a prototype
plug-in to SO that tags questions on SO based on the
purpose for which they are asked. We performed LDA
topic modeling on data set available on SOTorrent to
identify categories. We labelled the resultant LDA topics
by harmonizing the existing taxonomies. We presented 6

question categories, independent of technical aspects in-
volved in the questions. We then labelled question posts
in the dataset into one or more of the 6 categories. We
applied SVC on the labelled dataset to obtain machine
learning classification model which was integrated into
the plug-in to support tagging of posts on SO.

As a part of future work, we plan to extend SOTagger
to display contextual tags of posts on SO landing page
by training machine learning model only over titles of
questions. We plan to work in the direction to improve
levels of taxonomy from single level presented in the
paper to multiple levels and display the same as a part
of detailed contextual tagging. We could conduct an
experiment to check whether we get better results by
considering the opening and closing statements of SO
posts.

Questions tagged with MWE could be of greater use
for future research. Researchers interested to understand
and analyze code provided by users when posing ques-
tions can easily find questions with this tag. We envi-
sion that future work based on this paper may include
clustering posts classified as MWE to automatically find
bugs, combine co-occurring tags to formulate new tags
and so on. Also, several empirical studies on SO posts
such as understanding code quality, misuse of code snip-
pets and automatic bug reporting could be conducted.

References
[1] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers

ask and answer questions on the web?: Nier track,” in 2011 33rd
International Conference on Software Engineering (ICSE). IEEE, 2011,
pp. 804–807.

[2] S. Beyer, C. Macho, M. Pinzger, and M. Di Penta, “Automatically
classifying posts into question categories on stack overflow,” in
Proceedings of the 26th Conference on Program Comprehension. ACM,
2018, pp. 211–221.

[3] M. Allamanis and C. Sutton, “Why, when, and what: analyzing
stack overflow questions by topic, type, and code,” in 2013 10th
Working Conference on Mining Software Repositories (MSR). IEEE,
2013, pp. 53–56.

[4] C. Rosen and E. Shihab, “What are mobile developers asking
about? a large scale study using stack overflow,” Empirical Soft-
ware Engineering, vol. 21, no. 3, pp. 1192–1223, 2016.

[5] R. K.-W. Lee and D. Lo, “Github and stack overflow: Analyz-
ing developer interests across multiple social collaborative plat-
forms,” in International Conference on Social Informatics. Springer,
2017, pp. 245–256.

[6] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec
++: An enhanced tag recommendation system for software
information sites,” Empirical Software Engineering, vol. 23, no. 2,
pp. 800–832, 2018. [Online]. Available: https://doi.org/10.1007/
s10664-017-9533-1

[7] X.-Y. Wang, X. Xia, and D. Lo, “Tagcombine: Recommending tags
to contents in software information sites,” Journal of Computer
Science and Technology, vol. 30, no. 5, pp. 1017–1035, 2015.

[8] A. Joorabchi, M. English, and A. E. Mahdi, “Text mining stack-
overflow: An insight into challenges and subject-related diffi-
culties faced by computer science learners,” Journal of Enterprise
Information Management, vol. 29, no. 2, pp. 255–275, 2016.

[9] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? an analysis of topics and trends in stack overflow,”
Empirical Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[10] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about
code,” in Evaluation and Usability of Programming Languages and
Tools. ACM, 2010, p. 8.

View publication stats

https://doi.org/10.1007/s10664-017-9533-1
https://doi.org/10.1007/s10664-017-9533-1
https://www.researchgate.net/publication/335155157

StackDoc - A Stack Overflow Plug-in for Novice Programmers that
Integrates Q&A with API Examples

Akhila Sri Manasa Venigalla, Chaitanya S. Lakkundi, Vartika Agrahari, Sridhar Chimalakonda
Department of Computer Science and Engineering

Indian Institute of Technology

Tirupati, India

{cs18m017, cs18s502, cs18m016, ch}@iittp.ac.in

Abstract—There is a tremendous increase in the use of online
coding platforms, courses and walkthrough tutorials to learn
programming today. Stack Overflow, a Q&A website of crowd-
sourced knowledge on programming is one of the popular
platforms that developers and learners use to ask and answer
Q&As related to programming. However, novice programmers
often face difficulties in understanding the answers as they
may contain new terminologies, function calls and attributes
of certain technology or programming language. Researchers
have proposed different ways to augment Stack Overflow in the
literature, but to the best of our knowledge, there is no work that
exists to augment Stack Overflow posts with definitions of API
calls and relevant examples. To this end, we propose StackDoc, a
prototype plug-in that augments Stack Overflow with definitions
and examples of API calls in the questions and answers with
the goal of helping novice programmers. We did a preliminary
survey with 20 students of various universities, novice to Java and
85% of the users reported positive experience with the plugin.

Keywords- Stack Overflow; API call; Novice Programmers;
plug-in; Learning

I. INTRODUCTION

Programming is considered as one of the fundamental skills

in the 21st century. With the emergence of tremendous web

content and novel technologies, one can learn programming

through competitive programming or through online courses or

with the help of Q&A sites. Developers today extensively rely

on using code snippets and answers present Q&A websites like

Stack Overflow [1]. It has been observed by researchers, that

developers use Q&A sites such as Stack Overflow to clarify

their doubts [2]. These questions on Stack Overflow could

refer to debugging a code or adding new features to a given

code [3] [2]. To raise their level of understanding on the code

snippets provided on Stack Overflow, users generally search

for definition, usage and importance of certain function calls

that are used in the code snippets [3].

It was also observed that code examples are searched in

Android API documentation by programmers [4]. However,

most of the novice programmers might not be aware of all the

functions and attributes used in code snippets, making code

reuse difficult for them [5] [6] [7]. If these Q&A sites can serve

as knowledge reserves, beginners might be able to understand

how to solve a problem and purpose of using different function

calls. This analysis of existing literature presents the need to

support novice programmers with additional information to

effectively use Q&A websites. Also, we observed that tools

such as ExampleCheck [8] have been developed to augment

Stack Overflow to support developers by reporting incorrect

usage of APIs. However, to the best of our knowledge, existing

work did not focus on providing information about API calls

on Stack Overflow for novice programmers, motivating the

need for our work. In this paper, we propose to augment

Stack Overflow with definition, usage and examples for certain

inbuilt API calls of Java programming language.

StackDoc1 is a Stack Overflow prototype plug-in to help

beginners for simple and rapid learning. In this preliminary

version of our plug-in, a pop-up consisting of Java API calls

information is shown on the webpage to the users, instead of

searching on other sources for API definitions. We also con-

ducted a survey to evaluate our plug-in and received satisfac-

tory results with feedback of about 85% users recommending

the plug-in to their peers. Fig 1 shows a high-level overview

of StackDoc. We extract API definitions from standard Java

documentation, OpenJDK 102 and to demonstrate our idea,

we use JExamples3 to extract API examples. This extracted

information is displayed to the user on Stack Overflow. The

essence of the plug-in is to extract examples and information

about a certain API call from multiple sources and present this

information to novice programmers.

Fig. 1. Overview of StackDoc

The remainder of this paper is structured as follows. Section

II discusses the related work followed by Section III, which

focuses on design methodology and development of StackDoc.

1https://github.com/AkhilaSriManasa/StackDoc
2http://cr.openjdk.java.net/~iris/se/10/latestSpec/api/
3http://www.jexamples.com

We present the evaluation and user survey results in Section IV

and Section V. Finally, we discuss the limitations in Section

VI and end the paper with conclusions in Section VII and

future directions in Section VIII.

II. RELATED WORK

The number of code snippets on websites such as Stack

Overflow are increasing dramatically and most of these snip-

pets use many API calls [9]. There are various development,

debugging and learning tools to support novice programmers

(as shown in Table I). Scratch supports beginners to learn

programming by designing, creating and remixing code blocks

[10]. Alice was developed to support novice programmers

learn basic concepts of programming through 3D visualization

[11]. Treude et al. have augmented API documentation with

insights from Stack Overflow [12]. Tools such as Prompter
have been developed to support users with discussions on

Stack Overflow, based on the context of code in an Eclipse IDE

[13]. Exemplar provides applications relevant to queried APIs

entered by users in the tool [14]. The relevant applications

are retrieved using information retrieval and program analysis

techniques [14]. In Examplore, code snippets have been bound

with the examples of API usage and definitions of API calls

[15]. Examplore produces an interactive visualization to view

general usage patterns of an API call in a code snippet

[15]. Blueprint integrates source code examples into Adobe

Flex Builder, a development environment, resulting in faster

example code search [16]. Zhang et al. augmented Stack

Overflow with API misuse warnings through a Google Chrome

plug-in, ExampleCheck [8]. It displays a pop-up with API

misuse alert and a suggestion to fix these misuses by providing

curated examples that use the specific API call correctly [8].

TABLE I
RELATED WORK

S.No. Domains References

1 Development Examplore [15]

Exemplar [14], Prompter [13]

Blueprint [16]

2 Debugging [17], [18], ExampleCheck [8]

3 Learning Scratch [10], Alice [11]

Although ExampleCheck provides examples for correct us-

age of APIs, it does not provide definitions and examples of

any other APIs used in the code snippets. StackDoc displays

definitions and examples of all identified in-built API calls. It

can thus serve as a unified solution, as it reduces the effort of

searching for API usage and definitions explicitly. Exemplar
provides a search interface to retrieve examples for queried

API calls, whereas, StackDoc integrates API definitions and

API examples inline with the code snippets in java.

III. DESIGN AND DEVELOPMENT OF StackDoc
We have developed StackDoc as a browser extension and

tested on Google Chrome and Mozilla Firefox browsers. Stack-

Doc facilitates novice programmers by parsing the Stack Over-

flow webpage and retrieving documentation for identified API

calls from online sources such as OpenJDK and JExamples.

These API calls are highlighted, for which, documentation and

relevant example usages are displayed in a popup to the user.

This could help users learn about many new API calls that

the user might be unaware of. This design methodology of

StackDoc makes it distinct from existing approaches which

display definitions and examples after an explicit query from

the user. Whereas, we rely on standard Java documentation,

OpenJDK, to retrieve API definitions and JExamples.

Fig2 shows the development process of StackDoc consisting

of 5 steps.

In the first Step, we create a regular expression to identify

function calls in Java. The regular expression we used to

identify API calls is given below.

(([a-zA-Z$_]+[a-zA-Z0-9$_]*)\.)?
[a-zA-Z$_]+[a-zA-Z0-9$_]*\(

The defined regular expression (regex) accounts for the

fact that API calls can be made using a class name directly

or using an instantiated object. If the function is called

directly without specifying any variable or class name, then

the regex will still identify the function call. The defined regex

identifies API calls of the form <variable>.<function call>,

<class name>.<function call>and <function call>.

In Step 2, StackDoc generates a list of keywords using the

regex defined previously. These keywords are matched with

the existing corpus of class names and API calls of Java 10

specification. StackDoc then stores all the identified API calls

into an array for further processing.

In the third Step, for every identified API call, we search its

documentation in OpenJDK. Initially, we search the combina-

tion of <variable or class name>.<function call>directly in

the documentation. If a matching combination is found, then

its documentation comprising of the arguments and definition

is fetched. If any matching combination is not found, we

search OpenJDK documentation only for the <function call>.

Once a matching API call is found, it is highlighted and made

interactive so that the user will be able to click on it.

As a part of Step 4, when any of these highlighted API calls

are clicked, corresponding usage examples for the particular

API call are fetched from JExamples website.

Finally, in Step 5, the documentation of API calls and their

usage examples are concatenated and displayed as an overlay.

The overlay popup is hidden by default and becomes visible

only when the user clicks on any highlighted API call. For

every API usage example, a link to JExamples is provided

from where the complete example can be viewed.

IV. EVALUATION

We conducted a study to evaluate the usefulness of Stack-
Doc. We aimed at assessing the extent to which StackDoc
could be helpful to novice programmers in understanding and

implementing API calls and data types in Java. Hence, we

considered 20 university students novice to Java. The study

Fig. 2. Design Methodology of StackDoc

was performed with the help of a questionnaire based on Likert

scale [19], on personal laptops of students.

A. Procedure

All the participants were requested to add StackDoc exten-

sion to browsers on their laptops. They were all provided with

a slide-show depicting the working of StackDoc, that served

as a basic tutorial. These 20 participants were then asked to

search for questions related to Java programming language and

go through at least 20 questions and answers that they have

retrieved as a result of their search. They were requested to use

StackDoc to clarify their doubts about usage and definitions of

API calls that might arise in the process of their observation.

After completion of the above exercise, participants an-

swered a questionnaire using a 5-point Likert scale. Ques-

tionnaire given to the participants is as shown in Table II.

B. User Scenario

Suppose Veda is a novice programmer working on Java and

wishes to know why sorted arrays are processed faster than

unsorted arrays, for which she queries on Stack Overflow.

She is then displayed with a list of posts related to this

query as shown in [A] of Fig 3. She randomly selects one

of the displayed posts. Once a post is selected, Java API calls

present in code snippets of the post are highlighted ([B] of Fig

3). Among the answers displayed, Veda encounters API calls

such as System.println(), System.nanoTime(), Arrays.sort(),
Random.nextInt() and wishes to know their definitions and

usage. Veda clicks on System.println() in the code snippet.

She is then displayed with a pop-up containing definition and

examples of System.println() as shown in [C] of Fig 3.

If Veda navigates to another example containing log and

clicks on the API call, she will be able to view description

and usage of log(Level level, Supplier <String>msgSupplier)
(as represented in part [D] of Fig 3).

V. RESULTS

A. Questionnaire

As reported in Fig 4, StackDoc had a good user-friendly

interface (84% in Q1). In Q2, participants have agreed that

StackDoc retrieved moderately sufficient number of examples

to understand the API usage (83%, about 10 participants voted

for Agree and 5 participants voted for Strongly Agree out

of 20). The ratings in Q3 and Q4 indicate that StackDoc
has helped participants learn about partly unaware API calls,

reducing the search time (73% in Q3 and 79% in Q4).

Participants have also suggested to improvise StackDoc to

support other languages and to provide descriptions to a wider

range of API calls. In Q5, most of the participants have agreed

that they would recommend StackDoc to their peers (83%).

VI. LIMITATIONS

We presented a prototype of StackDoc, that augments Stack

Overflow by helping programmers to learn about Java API

calls. However, our plug-in could be improved in multiple

ways in future versions. Currently, StackDoc shows API

definitions only for Java, restricting its application to one

programming language. Also, we were not able to find API

definitions for few APIs as they do not exist in OpenJDK 10 or

might have been deprecated. Similarly, the limited availability

of examples on JExamples website limits StackDoc to retrieve

examples for few of the desired APIs.

Fig. 3. Example user scenario of StackDoc by user Veda; A: Search question on Stack Overflow; B: API calls highlighted by StackDoc; C: Description of
API call with Example as given by StackDoc; D: API Description for another example StackDoc

Fig. 4. Results of Questionnaire

In its current version, there is a delay between the user

asking for API definitions and StackDoc retrieving it from the

online sources, OpenJDK 10 and JExamples. The reason of

this delay being that StackDoc fetches required details only

after the user clicks on highlighted API call.

VII. CONCLUSIONS

We emphasized the need to support novice programmers

when they browse Q&A websites like Stack Overflow. Hence,

we have introduced StackDoc, a browser plug-in that augments

Stack Overflow. Our tool is an initial step to support novice

programmers with better mechanisms. We have extracted doc-

umentation of java API calls from OpenJDK 10 and examples

of these API calls from JExamples website. These API calls

are highlighted on Stack Overflow page and the extracted

information is displayed to the user as a pop-up when clicked

on the highlighted API calls. Our initial user study indicated

that StackDoc has helped users in finding definitions, but with

the need to have more examples. We plan to extend StackDoc
to support a larger number of programming languages and

multiple data sources. We plan to do an extended study with

50 users and incorporate changes to improve our plug-in.

VIII. FUTURE RESEARCH DIRECTIONS

Beyond StackDoc, our core idea is to support software engi-

neers by integrating documentation with software development

platforms. Here are a few potential future directions:

TABLE II
QUESTIONS IN SURVEY USING A 5-POINT LIKERT SCALE.

Q1: How easy was it to use the plug-in
interface?(1=very easy, 5=very difficult)

Q2: StackDoc has retrieved enough
number of examples to understand a
particular API usage. (1=strongly
agree, 5=strongly disagree)

Q3: StackDoc has helped me in learning
about API calls that I wasn’t aware
prior to this exercise.
(1=strongly agree, 5=strongly
disagree)

Q4: StackDoc has made my learning
quicker by reducing my search time.
(1=strongly agree, 5=strongly disagree)

Q5: I will recommend StackDoc to my peers.
(1=strongly agree, 5=strongly disagree)

A. Code hosting platforms

For example, Github could be augmented with appropriate

documentation such as API information to help developers,

especially novice developers to understand source code repos-

itories.

B. Documentation for System Administrators

Documentation is critical in system administration tasks, but

is often missed as the focus is only on executing the tasks,

making it difficult for novice system administrators. We see

that developing a plugin to support novice system administra-

tors based on StackDoc is a valuable future direction.

C. Algorithm Documentation

Understanding code snippet might be difficult than under-

standing an algorithm for a novice programmer. If an algorithm

is available or if an abstraction can be created, code snippets

could be integrated with the algorithm.

D. Deployment Scenarios

While deploying an application, in case of failures, it is

difficult to identify code location of failed modules and make

necessary changes. Each module could be integrated with

deployment document containing code repository information.

IX. ACKNOWLEDGEMENT

We thank all the participants for their valuable time and

feedback that helped us in evaluating StackDoc.

REFERENCES

[1] Yang, Di and Martins, Pedro and Saini, Vaibhav and Lopes, Cristina,
“Stack overflow in github: any snippets there?” in 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR).
IEEE, 2017, pp. 280–290.

[2] R. Garcia, K. Falkner, and R. Vivian, “Systematic literature review:
Self-Regulated Learning strategies using e-learning tools for Computer
Science,” Computers & Education, vol. 123, pp. 150 – 163, 2018.

[3] Ko, Andrew J and Myers, Brad A and Aung, Htet Htet, “Six learning
barriers in end-user programming systems,” in 2004 IEEE Symposium
on Visual Languages-Human Centric Computing. IEEE, 2004, pp.
199–206.

[4] J. E. Montandon and H. Borges and D. Felix and M. T. Valente,
“Documenting APIs with examples: Lessons learned with the APIMiner
platform,” in 2013 20th Working Conference on Reverse Engineering
(WCRE), Oct 2013, pp. 401–408.

[5] Lahtinen, Essi and Ala-Mutka, Kirsti and Järvinen, Hannu-Matti, “A
Study of the Difficulties of Novice Programmers,” in Proceedings of
the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education, ser. ITiCSE ’05. New York, NY, USA:
ACM, 2005, pp. 14–18.

[6] Bosse, Yorah and Gerosa, Marco Aurelio, “Why is programming so
difficult to learn?: Patterns of Difficulties Related to Programming
Learning Mid-Stage,” ACM SIGSOFT Software Engineering Notes,
vol. 41, pp. 1–6, 01 2017.

[7] Joorabchi, Arash and English, Michael and Mahdi, A.E., “Text mining
stackoverflow: Towards an Insight into Challenges and Subject-Related
Difficulties Faced by Computer Science Learners,” Journal of Enterprise
Information Management, vol. 29, pp. 255–275, 03 2016.

[8] Zhang, Tianyi and Upadhyaya, Ganesha and Reinhardt, Anastasia and
Rajan, Hridesh and Kim, Miryung, “Are code examples on an online
Q&A forum reliable?: a study of API misuse on stack overflow,” in Pro-
ceedings of the 40th International Conference on Software Engineering.
ACM, 2018, pp. 886–896.

[9] Subramanian, Siddharth and Holmes, Reid, “Making sense of online
code snippets,” in Proceedings of the 10th Working Conference on
Mining Software Repositories. IEEE Press, 2013, pp. 85–88.

[10] Resnick, Mitchel and Maloney, John and Monroy-Hernández, Andrés
and Rusk, Natalie and Eastmond, Evelyn and Brennan, Karen and
Millner, Amon and Rosenbaum, Eric and Silver, Jay and Silverman,
Brian and others, “Scratch: programming for all,” Communications of
the ACM, vol. 52, no. 11, pp. 60–67, 2009.

[11] Cooper, Stephen and Dann, Wanda and Pausch, Randy, “Alice: a 3-
D tool for introductory programming concepts,” Journal of Computing
Sciences in Colleges, vol. 15, no. 5, pp. 107–116, 2000.

[12] Treude, Christoph and Robillard, Martin P., “Augmenting API Docu-
mentation with Insights from Stack Overflow,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 392–403.

[13] Ponzanelli, Luca and Bavota, Gabriele and Di Penta, Massimiliano and
Oliveto, Rocco and Lanza, Michele, “Mining StackOverflow to turn the
IDE into a self-confident programming prompter,” in Proceedings of
the 11th Working Conference on Mining Software Repositories. ACM,
2014, pp. 102–111.

[14] Grechanik, Mark and Fu, Chen and Xie, Qing and McMillan, Collin and
Poshyvanyk, Denys and Cumby, Chad, “A search engine for finding
highly relevant applications,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1. ACM,
2010, pp. 475–484.

[15] E. L. Glassman, T. Zhang, B. Hartmann, and M. Kim, “Visualizing API
usage examples at scale,” in Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, CHI 2018, Montreal, QC,
Canada, April 21-26, 2018, 2018, p. 580.

[16] Brandt, Joel and Dontcheva, Mira and Weskamp, Marcos and Klemmer,
Scott R, “Example-centric programming: integrating web search into the
development environment,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 2010, pp. 513–522.

[17] Spinellis, Diomidis, “Modern debugging: the art of finding a needle in
a haystack,” Communications of the ACM, vol. 61, no. 11, pp. 124–134,
2018.

[18] Torroja, Yago and López, Alejandro and Portilla, Jorge and Riesgo,
Teresa, “A serial port based debugging tool to improve learning with
arduino,” in Design of Circuits and Integrated Systems (DCIS), 2015
Conference on. IEEE, 2015, pp. 1–4.

[19] Likert, Rensis, “A technique for the measurement of attitudes.” Archives
of psychology, 1932.

