TGRSR

W FUlTY FEA: Hed STHN
FHead | wra: e Taem wiargy s'fa |
TS FEHFTAA: Al | gararsi weA
Termentia: s siferge SR | rend Jrad aq
Fa: Pfd UG GF:, Fe, YU,
TR : STEd : 3L At g | ey
TG ITAYCEE T Teara: geef:
wiehrd: | qUSTd UM A URad IU-
WD | qT 9 Amehgrad fhawg i
qfcramn: wat wH e faRom g
I | A o e v e
fomreuor e | IEgTeas Hatdd ®uq
TEH | TSR Prehend e Ty |
T IETEITH -

TEhT: HIAEH: TATHEH AT
AT AT B |

arertfara Hoeht amrefgfae |

ST et o ey ||
U -

(3) amgifra g E: frEd
e arTeS T 9 |

T - e

®: 7- I;{EH

HIAR ? - AT T

ALt ?2- Tl

e et ? - s e

T HELN 2 - FYh

0 Bdse: F agvs

Email- chaitanya.lakkundi@gmail.com

Wl g Yt ? - ATt Hyht
Rpieaz: -
Tester amom: agentt = T | agay

s Teremmty ugTf SoTfage ST
9 ffef | & v sawm Rk
HIOMIH | T Feal gerrareri- fgui= |

2. IE TS |

3. ATt TrgRR! TR A o |

3. e T e sl 9= |

% arrefufiuTd 9= |

I I gRTAme) wat sfa fafed for |
Fretq I 3ft wd aeAfshaTat shdeaeraT

FENUTE_: | € ¢
A - 00

arafa | ade urediTa 3 U
Toramat sweamraT Irafd | el
wiooad 3fa e | S gl
fat: wsStoreree: | I
Tergreromf |

FramRe | Awr wdvt wamq
TR | qAT IE T
grrefufaua o= | wanfy Srefguf
Wﬁ@ﬁlma‘dw:w
THEE A Sggehie Ua
Tl | A IR JegarEae
Iref: TR |

AT [/ i
TragsHh: wigd: IHq | gaml
U I JaHe UE Wed
AT TP |
Terefrer SamewoT -

TETehterT WigaT forforay srfsdta
wied qfghreatifa wd | Aq

Fmtorger wdfifeay e
:ﬁﬁawmﬁmwl arfeaan: gas: 3t 7Ty
W&Wlﬂ@mq’i . Hwrga A fRrar i |
quﬁ? 1-(2.5) 3. SrgE ga a1 T ST |
T - ¥, Pt TETeE Wy
Frofoege wETsTeE Ty @ drEe |

39 AT FECPEATHRATT: FEH: I AT .
e NS
I |Eq T Ay ey YA | : * HET: g STaes

TG TSTohH: TReTE | ¥ | |
v, 1 TR oI | (qec T AT %m@;ﬁmw

¢ R | AETYUTER T
A - 02

qHeUs: @ @ | angter
AT el = as if 3fq ref:
gdugd | The Himalayas are, as

if a measuring scale used to
measure the earth.

Jhaua sty war ga o,
N 39 TR 3fa arergaT
I TRertE |

(ax wfgartt i guemmi
fafeay | afem wwmwE w:
AT | T WEYIH I -

wfeart g oo | esEEs
Hathe o wiaan, ges ga |)

3T AT ;AR Frer wiaan e | (oo
A wiaant g gfagess: g |) w9
T 3 R fereeire T aq Frteee
TR YT (SR) geifEay (Trraugrey)
i | Ay TRy S ga g s
Toorar afe | sretq wdvatsfr Iepeen erdifa
e | fade de wEe: (3) ROT 9wk
FHad | Y At Aagad g wiaeRa |
I AT e IR Jdeea TR SNt |
T AT YR $gd A Iugraumat
Tifa sfa s |

TEIT HAWT YT T THIe Hea-
TR ARG B | EToed:
AT TATRTOT: IUR TATRTOM: TGAT: T 8gAi:
SragTae HT (¥) 3 e |

@ & gad 9o foel deenn: vEE 'y
Bfa | 3o vee ard foee SR emer
qrgafd |

Iufex fom sraciie waRa gATg aa-
=™ | wguor o faforad | wigwa gd fega
ST gYRY: G Tt peer sgeeq |
T G TYRY W e | S geor -

e e we-

et it e shge |

EURREYERIENETC S

TOIg T T AT |1-(2.¢%)

SAREITER G IATQr TR e aq
3 AT feramueT | gfd | @i = s
S;WFL), et (o), otg (vrag)

|

2. g firee emeaq |

R . W& s faref= |

VOIS |2 3
M - 020

3. TH: AEAIN W qUIgG |

Td: Bl A qreodfie ageed |

2. g Fy: offe | (qwr wmne: firem ey

2. Torrg TerEml e rae: add | (& shg forsAtwy)

3. THAGHON AT TETH AREdrTe | (TH: &0 98 gorg)

Ty gfe T fdmom | fig W v, 9 | Affasatroie: g
TG |
3WRiBR:

TUSTAIE FHEAT o qehequr 3n Femreasnay ety ufsa wfa srerfam: =fefa
el | T e foharaT We W o WIaTd e | ST Tyreent: o Wi yag
et | fafaerad: FaniE aq feelt e wRoteat g | o wewh St waeT
BIAUMY IUHR: HEH Wforsafa | Haw: Taegd N oA femtr 1fy @iy wgar | gia
e |
YR gt

I IEHTEAR THHETE FAATA T Ha: TH e | Feraaamman: a=ie: fidewga
T | T ST T femor o= |

* w@aﬂwam - https:// sambhasha. ksu.ac.in/Comp Ling/bhattikavya-nandini/
* ol Tafag aAre: - https:/sambhasha.ksu.ac.in /anvaya” chitranam »

STGHATSRT FFAVRIGITY AT Feg a9t |
S-ubibrRn: aEsdbcad Hfgdaubiorn: snedbcad

Subscription rates for E - version Subscription rates for printed version

ar Bharat & SAARC Other Year Bharat Bharat SAARC Other
Nepal (INR) (INR) countries (nR)Ordinary. Post - (NRJRegd. Post (INR) countries

Ye

Strerge: - http:// www.sambhashanasandesha.in

Ph - 080 - 26722576/26721052
E-mail : sandesha@samskritam.in samskritam@gmail.com

Twitter - @sambhashana Facebook - sambhashana.sandesha

I - 0%

Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

PointerViz - Towards Visualizing Pointers for Novice Programmers

Akhila Sri Manasa Venigalla, Chaitanya S. Lakkundi*, Sridhar Chimalakonda
Intelligent Software & Human Analytics (ISHA) Research Lab
Dept. of Computer Science and Engineering
Indian Institute of Technology
Tirupati, India
{cs18m017, cs18s502*, chl@iittp.ac.in

Abstract

Pointers are considered as one of the key concepts in
learning programming and are extensively used for
implementing several data structures. They lay the
foundation for handling dynamic aspects of a program,
increase execution speed and handle data types with
more efficiency. This makes it critical for budding
programmers to be well versed with using pointers.
However, most of the novice programmers find it
difficult and tricky to understand concepts such as
address allocations, pointers referring pointers and
data structures containing pointers. Hence, drawing
the physical structure and flow of pointers is
considered to be a common learning practice to gain
better clarity and avoid confusion when learning
pointers. But, it is time consuming and tedious to draw
the flow of pointers on paper while programming. To
help programmers understand these variations in
pointers, we propose PointerViz as a Google Chrome
extension that displays the pictorial representation of
selected code with pointers. We conducted a
preliminary survey with 40 students from various
universities and 83% of the users reported positive
experience with the plugin.

1. Introduction

Good programming skills require sound knowledge
of data structures. Learners of programming languages
face various difficulties in terms of understanding
various functions, attributes and data structures [1].
Several tools have been developed to help novices
learn programming [2,3,4,5,6]. They include games
that help students learn computer programming [7],
environments that support conventional programming
instructions like Mindstorm [4], Scratch [5], Blockly
[6], Snap! [8] and many other code visualization tools
such as Examplore [9] and Python tutor [3].

*This author has discontinued from the
institute.

URI: https://hdl.handle.net/10125/63754
978-0-9981331-3-3
(CC BY-NC-ND 4.0)

H{CSS

execution speed, handling complex data structures with
more efficiency and ease. Pointers allow sharing
without copying through pass by reference, which is
advantageous when programmers desire to pass around
big arrays. They also enable programmers to resize
data structures whenever required, supporting dynamic
memory allocation. While security seems to be a
concern when pointers are used by novice
programmers, pointers provide a greater advantage in
terms of performance by speeding up program
execution [11]. Performance being a critical aspect of
programming, trade-off between security and
performance can be considered useful. A study
conducted by Lahtinen et al., states that most of the
students face difficulties in understanding pointers and
references [12]. This reveals that though pointers are
the basic concepts of programming, they are still
difficult to understand.

Visualization is one of the ways that can help
learners to gain a better of data structures. Researchers
have proposed various forms of code visualizations
to improve learning of novice programmers since a
couple of decades [13,3]. Continuous improvements
are being made to develop techniques and tools that can
better support visualization. Online Python Tutor
proposed by Philip Guo is one such tool that visualizes
code written after compilation [3]. Visualizing code
snippets written by programmers helps in better
program comprehension. Visualization can also aid
programmers who are well aware of data structures and
their implementation in helping them with trade-offs of
using pointers. Learners of programming are generally
tested on the address references and pointers to assess
their knowledge of data structures [12], making it
necessary for even novice learners to understand these
concepts.

A common practice of learners is to draw down
the flow of pointers’ data and references with respect to
memory allocations to better understand the code. But
this method demands time, effort and sometimes may
also be incorrect [14]. Hence, there is a strong need to

Page 118

provide learners with technology that visualizes
pointers based on the program or pseudo code they
write, which is the main motivation for our work.
Though there are many existing visualization tools
that help in visualizing code snippets, there is not much
work done to visualize pointers and their references
before compilation, to the best of our knowledge.
Hence we propose PointerViz! to support learners of
programming language to comprehend pointers better.
The remainder of this paper is structured as follows.
Section 2 discusses the related work followed by
Section 3, which focuses on design methodology and
development of PointerViz. Working of PointerViz is
described in Section 4. Section 5 presents user scenario
in the form 4 cases. We present the evaluation and user
survey results in Section 6 and Section 7. Finally, we
discuss the limitations in Section 8 and end the paper
with conclusions and future directions in the Section 9.

2. Related Work

Researchers have developed various visualization
tools to help novice programmers learn programming
quicker have been developed. Scratch [5] is a block-
based visualization tool that helps users to program
easier by supporting drag and drop of blocks than
writing the program. Blockly is also a block-based tool
that provides visualization of programs [6]. Coding
concepts are represented as interlocked blocks and
Blockly generates syntactically correct code in
programming language of our choice [6]. Tools like
Examplore provide visualization of APl usage
examples to help users understand various correct ways
of wusing APIs in programming languages [9].
Progranimate, an e-learning web based tool assists
users in programming using flow chart representations.
It provides code generation, inspects variables and thus
provides syntax and semantic learning of programmers
to the users. This helps users to gain an in-depth sound
knowledge of the programming language [15]. NetBlox
is another visualization tool that has been developed to
enhance understanding of distributed programming
[16]. In this tool, messages that are communicated
among systems are represented as blocks with message
payloads. Programmers are provisioned to provide
Message Type that defines data present in the message.

Games is another direction of research that has
been leveraged to make programming interesting and
easy [17,18,19,20].0ne of the games developed by
Leutenegger et al. teaches fundamental programming
concepts in C++language, with the help of 2D game
development [18].Robot ON! is a game developed to
improve program

1https://github.com/AkhilaSriManasa/
PointerViz

Comprehension among learners. It helps players in
understanding of control flow, program statements,
data types and function calls by allowing players to
demonstrate their understanding of the above in a given
program [19]. RoBUG game has been developed to
support and motivate players in learning of effective
debugging. It comprises of four levels that require
player to do certain tasks in each of them, like code
tracing, using print statements to identify bugs, use
divide-and-conquer strategy to spot the bugs and using
breakpoints to analyze variable values [20].

Extensions to GCspy tool have been developed, that
track and visualize dynamic memory allocations as
nodes and graphs [21]. BlueJ is an IDE that provides
UML notation of Java code which helps users visualize
structure of the application [22]. Users can view source
code of classes present in UML diagrams by clicking
on them. CoffeeDregs, a dynamic analysis tool, has
been developed to support and visualize debugging
facilities [23]. VisuAlgo has been introduced to
visualize a set of predefined algorithms. It shows the
visual execution of an algorithm for a given input [24].
Jeliot3 has been developed as a programming tool that
enables users program and visualize step by step
execution of the program in the form of animations. It
is mainly focused on expression evaluation and is
depicted by the movement of messages, method calls,
values and references in the code [25]. Java Visualizer
illustrates dynamic run-time behavior of program by
moving back and forth in program execution?.
JavelinaCode, a web-based IDE, supports synchronized
visualization of static and dynamic aspects of Java
source code [26]. Pythontutor, proposed by PhilipGuo
visualizes the code by displaying the data structures
used [3]. Another visualization tool called
PlayVisualizerC (PVC) that dynamically visualizes the
code in terms of memory allocations has been proposed
by Ryosuke et al. in [27]. Visualization tools have been
developed to help students learn programming,
debugging and explore various possible ways of
writing programs. Games have been developed to
support students in program comprehension, various
concepts of programming such as function calls,
values, movement of messages and so on. Tothe best of
our knowledge, there is no visualization tool or a game
that can help programmers comprehend concepts of
pointers and their implementation in the program
without compilation of. Hence, in this paper, we
propose PointerViz to address this issue. PointerViz
aims to visualize the statements insitu IDE, before
compilation, rather than visualizing

2http://www.cs.princeton.edu/~cosl26/java_
visualize/

Page 119

https://github.com/AkhilaSriManasa/PointerViz
https://github.com/AkhilaSriManasa/PointerViz
http://www.cs.princeton.edu/~cos126/java_visualize/
http://www.cs.princeton.edu/~cos126/java_visualize/

Function 1 Function 2

----- Function N

! Formulate Define
| Regular

functions

Expressions

‘ tokens ‘ | tokens |

Nodes
+Edges Vis.js
+Options

----- tokens

Visualized Code

Figure |. Approach for design of PointerViz

them after compilation of the code unlike existing works
such as pythontutor [3] that visualizes the code after
compilation. Visualizing statements on the go will help
novice programmers in identifying and rectifying the
mistakes if any, at the early stages of the code, as a result
reducing the debugging efforts. Also, PointerViz displays
primitive visualization of pointers, which is identical to
the way budding programmers draw on paper, unlike
PVC [27] which displays memory locations and internal
details. This primitive representation can help novice
programmers relate better to their interpretations.

3. Design of PointerViz

PointerViz prototype is currently developed as an
extension® to Google Chrome. As a proof of concept,
we developed PointerViz as a plugin to support an
online compiler and interpreter, ideone.com?*, as shown
in Figure 1. However, our plugin can be extended to
support any other online coding playgrounds such
as codepad.org and compileonline.com. In its current
form, PointerViz can also be added as an extension to
browsers other than Google Chrome, such as Mozilla
Firefox. Visualizations are generated using an open
source Javascript framework, vis.js®. Vis.js enables us
to dynamically visualize graphs within the browser by
facilitating manipulation of and interaction with
dynamic data and also customization of nodes. Vis.js
also helps in handling large amounts of dynamic data,
making it a suitable choice to generate visualizations in
coding environments which involve considerably large
amounts of dynamic data.

PointerViz is designed to support novice
programmers get a better view of pointer data structures.
It provides interactive visualization to the users. The

might motivate users to view representations and thus
comprehend the concepts better. As the first step of
design, we formulated regular expressions that portray
various ways in which pointers are defined. The regular
expressions used to match the statements written in the
code by users, are as follows:

Regular expression [A]:
/la-z1+\ \x\ ([a-zA-Z$_][a-zA-Z0-95_1*)\;/gm;
recognizes examples such as : int *p;

Regular expression [B]:

/la-z]+\ *\ (l[a-zA-Z$_][a-zA-20-95_]*)\ *=\
*null\;/gmi;

recognizes examples such as : int *p = NULL;

Regular expression [C]:

/la-z]1+\ *\ ([a-zA-Z5][a-zA-Z0-9%]x)\ x=
\ *\&\ ([a-zA-2$_][a-zA-20-95_1*)\;/gm;
recognizes examples such as : int *p = &a;

Regular expression [D]:
/la-z]1+\ ([a-zA-Z$][a-zA-Z0-9S$ 1+*)\
AN\ *([0-91+)\ *\T\;/g; N

recognizes examples such as : int p[10];

Regular expression [E]:
/la-z]1+\ ([a-zA-Z$][a-zA-Z0-9S$ 1+*)\
AN\ *([0-91+)\ *\T\;/g; N

recognizes examples such as : int p[9][10];

Regular expression [F]:

/la=z]+\ **\ = ([a-zA-ZS$_][a-zA-Z20-9$_]*)\
*=\ *\" ([a-zA-20-9$_]1+)\"\ *;/gm; N
recognizes examples such as : char *p="test";

Regular expression [G]:

la-z]+\ * ([a-zA-2S$][a-zA-20-9%]*)\ *\[\
*([0=97+4)\ *\I\ *\=\ «((\{('([[a-z]|[A-Z]
[0=91+1[S_11)" =\, *)=*\})

FONECCL0=91+4)\ *\, *)*\}));/gm;

recognizes examples such as : int p[2]={1,2};

Regular expression [H]:
]

/la-z]+\ *([a-zA-Z$][a-zA-Z0-95 1x)\ =*\[\
*([0=97+)\ *\I\ *\[\ = ([0-9]+)\ *\]=\

* ((\N{ (" ([[a-z] | [A=2Z) 1 [0-9)+I[S_11)"

A\, x)*\NP) L ONCCCL0=91+)\ *\, %) *x\}));/gm;

recognizes examples such as :
char p[2][3]={'a','b',"'1"','d",'c"','2"}

floating representations of links among various nodes

Regular expression [A] points to pointer declarations
3pointerViz can be installed on Mozilla Firefox as well. alone, wher_e In t_he po!nters point t_O a garbage value.
Yttps://ideone.com/ Statements in which pointers are assigned NULL values
*http://codepad.org/ are recognized by Regular expression [B]. Regular

bhttps://visjs.org/

Page 120

https://ideone.com/
https://ideone.com/
http://codepad.org/
http://codepad.org/
https://visjs.org/

expression [C] recognizes statements in which the
pointers are assigned the address of a variable. Arrays
of a given size can be obtained from Regular expression
[D]. Two dimensional arrays of given row and column
sizes are recognized by Regular expression [E]. Pointers
to strings are recognized by Regular expression [F].
One dimensional arrays whose elements are defined are
recognized by Regular expression [G] and 2D arrays
whose elements are defined at the time of declaration
are recognized by Regular expression [H].

For every regular expression that has been
formulated, a function is defined to generate the
corresponding visualization. Every visualization is aset
of nodes with connections between them that are
represented using edges. Node shapes are defined in
functions in a way, such that they convey the semantic
meaning of statements written by the user. The
difference in address space between nodes is also
represented in by a numeric value between the nodes,
representing the number of bytes. These nodes and
edges are passed as a dataset to previously stated
visualization framework, vis.js to render visualizations.

Functions take parsed tokens as inputs and verify if
they match any of the defined regularexpressions. They
return options of shapes, nodes and edges in the form of
data. The function in script below deals with statements

of the form defined in Regular expression [A].

function ptr_typel (code) {
const regex 1 =/[a-z]+\
* ([a-zA-Z$][a-zA-20-9$ 1*)\;/gm;
const m = regex_l.exec(code);
const identifier =m[1];

const data = {
nodes: nodes,edges: edges};
return [data, options];

}

Definitions for Edges, nodes and shape options are
shown in the script below considering Regular
expression [A] as an example, where nodes are defined
to be displayed as circles and edges as arrows.
Variables and pointers are defined to be displayed as
circles and arrays are represented as rectangular boxes.

const identifier = m([1l];
const nodes = [
{id:0, label: identifier,
group: "O0", title: code},
{id:2, shape: 'dot',
label: "Garbage"}
1
const edges = [
{from: 0, to: 2, arrows: 'to'}
1
const options = {
nodes: {
shape: 'circle',

size: 30,
font: { size: 30,
multi: true

}I
borderWidth: 2,
shadow:true
}I
edges: {

width: 3,
}
bi

Visualization is updated regularly at the end of every
statement. Code is processed in the form of tokens,
which are fed into each of the pattern recognizing
functions. The function which contains matching
regular expression is executed. New patterns that are
not defined previously can easily be added, by defining
new functions the newly defined patterns, making it
easy to extend this plugin from a developer’s
perspective.

4. Working of PointerViz

The main aim of PointerViz is to display the
references of pointer data structures as used in the code
written by the user. Workflow of PointerViz is a seven
step mechanism, as shown in Figure 2.

« Step 1. User enters a statement in desired
programming language among C or C++ in the
text space provided by ideone.com, as the current
prototype is being tested forideone.com.

« Step 2. Tokens are extracted from these
statements and are considered as individual
statements. Token extraction is done with help of
pointerViz.js script that filters out statements by
semi colons used. Even if users enter various
statements in the same line, they can be separated
out by considering semi colon symbols.

« Step 3. Extracted tokens are passed to
pointerViz.js file, which forms the basis of plugin.
Functions written in the script process these
tokens and compare them with regular
expressions which are defined apriori.

« Step 4: The pointerVizjs file generates nodes
edges based on the matched regular expressions.
It then renders shapes corresponding to these
regular expressions, as defined in each function.

« Step 5: Resulting nodes and edges are passed to
vis.js framework to produce results by processing
them. It provides overlays for the same as
mentioned in the pointerViz.js file.

Page 121

Sp1 1o G+ code 22225 Tokens Step3 | pointerViz.js
write ‘ Sxirach send file
Written in
space Individual
- provided by Statements generalg _—
platform ep
user
? Y
display | Vjsualization | Preduce o send
Step 7 ofcode | Step6 vis.Js Step 5 Nodes+Edges

Figure 2. Stepwise Working of PointerViz

» Step 6: Results are produced in the form of

visualizations based on the code entered by user.

« Step 7: The results obtained in the previous step
are displayed to the user in the space provided
below the existing text space. Users are provided
with facilities to change orientations of the
figures and also to view code that resulted in
creation of the node by hovering on the first
node.

For each line entered by the user on the console
provided, PointerViz compares the statement with
predefined regular expressions. For a correct match, the
shapes and their relations are displayed. These shapes
help novice users to differentiate among various types
of pointer declarations. The pointers are visualized
using circles with arrows emerging from these circles.
These arrows point to the referenced variables as per
the identified tokens. The shapes used to represent
these data structures contain respective variables that
have been used by users in their code for better
readability.

Semi colons are used as delimiting symbols to
separate tokens in monolithic code. As we have
implemented PointerViz for programming languages
like C and C++, it identifies next line or statement by
semi colon. As new statements are entered, new
visualizations with respect to those statements are
generated and displayed to the user. Visualizations of
previously entered statements are maintained to help
users revisit those structures instead of re-writing the
same statements. Visualizations are done in First Come
First Display pattern i.e., visualizations of latest
statements are displayed at the bottom, similar to push
operations in queue. Users can select and drag nodes in
the displayed visualizations to alter their orientation.

5. User Scenario

Suppose Veda is a novice programmer working on
C programming language and she wishes to learn the
how pointers refer to various variables in the program.
She then visits ideone.com, an online coding
playground, selects C as the language she wishes to
code.

 Case 1: She starts typing the first statement:
int*=p;
Visualization of this statement is displayed. She
then hovers on the node p displayed in the
visualizations. The code that resulted in creation

of node p is displayed above this node as shown
in Figure 3.

Garbage

Figure 3. Visualization of code for Case |

« Case 2: She writes another statement in addition
to the previous statement resulting in the
following code

int*p;
int*qg=NULL;
int*s=@&a;

A visualization of the statement is displayed with
sas a circular node and an arrow originating from
this node to another circular node a as shown in
Figure 4. Also, the statement where a pointer is
assigned a NULL value is represented with a
circular node g pointing to another circular node
having the value as NULL. These statements are
visualized and displayed below the previous
statement as shown in Figure 4.

Page 122

Q2o fef = | 8 i)
@@
@@

Figure 4. Screenshot of PointerViz showing
visualization of code for Case 2

+ Case3: Veda adds another statement that
declares an empty array of size five.

intp[5];

Veda can view visualization of the statement by
scrolling down the page as in Figure5. The
difference between memory address of one
element of the array to the next element is
represented with the numeric value of number of
bytes that differ, on a line between the elements.
Since the entered array is an integer array, each
element occupies amemory of 4 bytes and hence,
memory locations of consequent elements differ
by 4 bytes, as indicated between the nodes in
Figure 5.

*p contains address of p[0]
+4
®)
+4
pi2] pL0]

Figure 5. Visualization of code for Case 3

» Case 4: When Veda writes a statement with a
two dimensional character array of two rows and
three columns.

charp[2][3];

Veda can view visualization on the page as in
Figure 6. Since, the array is a character array,
each element of the array occupies 1 byte in the
memory and hence, it indicates that one element
occupies the memory location that is equal to
memory location of the preceding element+1.

pI1][2] b+ pIII).. plo][1] - p[0][0]

pL1][0] m ®

*p contains address of p[0][0]

Figure 6. Visualization of code for Case 4

Case 5: Veda, then writes a statement
representing a pointer to string:

char *p = "moksha";

The above statement is then displayed to Veda as
shown in Figure 7, where the pointer variable p
points to the given string and stores the address
of the first character in the string (m in this
example).

E} +4
(o} @*\@)

h *p contains address of m

Q0

+1

Figure 7. Visualization of code for Case 5

Case 6: Veda writes another statement that
defines a character array of size3.

intp[3]={'a','s','m"};

Visualization of the above statement is displayed
as shown in Figure 8.

Case 7: Visualization of a two dimensional array
defined at the time of declaration as given below,
is displayed as shown in Figure 9.

intp[2][3]1={1,3,5,7,9,2};

Page 123

/V@ +—
& ”E]

*p contains address of a

Figure 8. Visualization of code for Case6

1 T
*q contains address +4‘\

Figure 9. Visualization of code for Case7

6. Evaluation

To evaluate PointerViz, we have conducted a user
experience study with 40 volunteers, in the age group
of 18-20 years, from various universities. The
participants were asked to install our PointerViz plugin
as an extension to Google Chrome browser, on their
personal desktops or laptops. They were also provided
with a slide-show depicting the procedure to install
PointerViz, a sample working video of the plug-in and
few sample statements that contain pointers, which
served as a hasic tutorial. They were then asked to
write code that involved snippets containing pointers
usingideone.com. The participants were suggested to
view and verify visualizations displayed based on the
code that they have written. A user survey has been
conducted with the help of a five point Likert Scale. A
questionnaire as provided in Table 1, in which each
question has to be rated on a scale of 1 to 5, has been
sent to volunteers to assess their experience and
evaluate PointerViz.

7. Results

As reported in Figure 10, PointerViz had a good
user-friendly interface (83% in Q1). In Q2, about

Table I. Questions in survey using a 5-point Likert
Scale.

Q1: How easy was it to use PointerViz interface?
(1=very easy, 5=very difficult)

Q2: PointerViz has visualized pointer data
structures clearly and correctly. (1=strongly
agree, 5=strongly disagree)

Q3: PointerViz has helped me in learning
about various ways of usages of pointer data structures.
(1=strongly agree, 5=strongly disagree)

Q4: PointerViz has kept the whole experiment
interesting and informative. (1=strongly agree,
5=strongly disagree)

Q5: I will recommend PointerViz to my peers.

(1=strongly agree, 5=strongly disagree)

82% of participants have agreed that PointerViz has
visualized the statements clearly and correctly. The
ratings in Q3 and Q4 indicate that PointerViz has helped
about 77% of participants learn about various ways of
using pointers and that the experiment has been
considerably interesting (80% in Q4). However, they
have also suggested increasing the scope of
visualization to various definitions of pointers. In Q5,
most of the participants have agreed that they would
recommend PointerViz to their peers (83%).

8. Discussion and Limitations

The core idea of this paper is to apply the concept
of visualization to aid users in understanding critical
concepts in programming languages. One of the critical
aspects as identified by researchers is pointers [12].
PointerViz prototype is a first step towards supporting
critical programming concepts through visualization. In
order to do an in-line visualization of code, the current
implementation of the tool uses lexical analysis and
parsing at statement level instead of block level. We
have limited the scope of PointerViz to understand
individual statements and visualize the same. We shall
hence extend PointerViz to support analysis of
complete code considering relations among the
statements in code in the future versions. While we
initially planned to map understanding pointers with
different levels of Bloom’s taxonomy, we limited our
scope to basic concepts in the current version.

While the idea seems to be simple, we aim to extend
this to support visualization of pointers in cases where

Page 124

Results of User Survey

25 Strongly Agree
Agree

20 B Neutral

15 B Disagree

@ Strongly Disagree

Volunteers for Survey

5 | |
0
0] Q2 Q3 04 Q5

Questions in Survey

Figure 10. Results of User Survey Questionnaire

pointers deal with various programming concepts such as
use of pointers in a function, array of pointers, linked lists
and use of pointers in user defined data types such as
structures. Though the current prototype focuses only on
visualizing code statement wise, based on the feedback
we received, PointerViz could help novicesget a better
understanding of the pointers and references.

9. Conclusion and Future Work

In this paper, we have introduced PointerViz to
visualize pointers, as a prototype extension to Google
Chrome web browser that augments ideone.com. As
pointers are considered to be one of the critical aspects
of learning programming, our work aims to support
novice programmers learn better [12,1]. PointerViz
prototype has visualized code written by users upto a
decent level of satisfaction, owing to 82% of
participants willing to recommend this plugin to their
peers. PointerViz can easily be extended to support other
online coding platforms as well. As reported by survey
participants, one most important suggestion is to extend
PointerViz for other usages of pointers such as linked
lists and doubly linked lists. We plan to extend the
plugin to support multiple scenarios of pointers pointing
to pointers, array of pointers. We shall also extend the
plugin to include display of timely visualizations of
code blocks. We see this work as a first step towards
improving program comprehension through
visualization that could help novice programmers.

Acknowledgements

We thank all the volunteers for their valuable time
and honest feedback that helped us in evaluating
PointerViz.

References

[1] Y. Bosse and M. A. Gerosa, “Why is programming so
difficult to learn?: Patterns of difficulties related to
programming learning mid-stage,” ACM SIGSOFT
Software Engineering Notes, vol. 41, pp. 1-6, 012017.

[2] A. Luxton-Reilly, E. McMillan, E. Stevenson,
E. Tempero, and P. Denny, “Ladebug: an online tool to
help novice programmers improve their debugging
skills,” in Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer
Science Education, pp. 159-164, ACM, 2018.

[3] P.J. Guo, “Online python tutor: embeddable web-based
program visualization for cs education,” in Proceeding of
the 44th ACM technical symposium on Computer science
education, pp. 579-584, ACM, 2013.

[4 S. H Kim and J. W. Jeon, “Programming lego
mindstorms nxt with visual programming,” in Control,
Automation and Systems, 2007. ICCAS’07. International
Conference on, pp. 2468-2472, IEEE, 2007.

[5] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and
N. Rusk, “Programming by choice: Urban youth
learning programming with scratch,” in Proceedings of
the 39th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE 08, (New York, NY, USA),
pp. 367-371, ACM, 2008.

[6] A. Marron, G. Weiss, and G. Wiener, “A decentralized
approach for programming interactive applications with
javascript and blockly,” in Proceedings of the 2nd edition
on Programming systems, languages and applications
based on actors, agents, and decentralized control
abstractions, pp. 59-70, ACM, 2012.

[71 M. Muratet, P. Torguet, J.-P. Jessel, and F. Viallet,
“Towards a serious game to help students learn computer
programming,” International Journal of Computer
Games Technology, vol. 2009, p. 3, 2009.

[8] C. North and B. Shneiderman, “Snap-together
visualization: can users construct and operate
coordinated visualizations?,” International Journal of
Human-Computer Studies, vol. 53, no. 5, pp. 715-739,
2000.

[9] E. L. Glassman, T. Zhang, B. Hartmann, and
M. Kim, “Visualizing api usage examples at scale,” in
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, p. 580, ACM, 2018.

[10] B. W. Kernighan and D. M. Ritchie, The C programming
language. 2006.

[11] A. D. Robison and P. F. Dubois, “C++ gets faster for
scientific computing,” Computers in Physics, vol. 10,
no. 5, pp. 458-462, 1996.

[12] E. Lahtinen, K. Ala-Mutka, and H.-M. Jérvinen, “A
study of the difficulties of novice programmers,” Acm
Sigcse Bulletin, vol. 37, no. 3, pp. 14-18, 2005.

[13] S. Bassil, R. K. Keller, et al., “Software visualization
tools: Survey and analysis.,” in IWPC, pp. 7-17,2001.

[14] A.J. Ko, B. A. Myers, and H. H. Aung, “Six learning
barriers in end-user programming systems,” in 2004
IEEE Symposium on Visual Languages-Human Centric
Computing, pp. 199-206, IEEE, 2004.

[15] A. Scott, M. Watkins, and D. McPhee, “E-learning for
novice programmers; a dynamic visualisation and
problem solving tool,” in Information and
Communication Technologies: From Theory to
Applications, 2008. ICTTA 2008. 3rd International
Conference on, pp. 1-6, IEEE, 2008.

Page 125

[16]B. Broll, A. Le’deczi, P. Volgyesi, J. Sallai, M.Marati, A.
Carrillo, S. L. Weeden-Wright, C. Vanags, J. D. Swartz,
and M. Lu, “A visual programming environment for
learning distributed programming,” in Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer
Science Education, pp. 81-86, ACM, 2017.

[17] A. Vahldick, A. J. Mendes, and M. J. Marcelino, “A
review of games designed to improve introductory
computer programming competencies,” in Frontiers in
Education Conference (FIE), 2014 IEEE, pp. 1-7, IEEE,
2014.

[18] S. Leutenegger and J. Edgington, “A games first approach
to teaching introductory programming,” in ACM SIGCSE
Bulletin, vol. 39, pp. 115-118, ACM, 2007.

[19] M. A. Miljanovic and J. S. Bradbury, “Robot on!:a
serious game for improving programming comprehension,”
in Games and Software Engineering (GAS), 2016
IEEE/ACM 5th International Workshop on, pp. 33-36,
IEEE, 2016.

[20] M. A. Miljanovic and J. S. Bradbury, “Robobug: A serious
game for learning debugging techniques,” in
Proceedings of the 2017 ACM Conference on
International Computing Education Research, pp. 93—
100, ACM, 2017.

[21]A. M. Cheadle, A. Field, J. Ayres, N. Dunn, R. A. Hayden,
and J. Nystrom-Persson, “Visualising dynamic memory

allocators,” in Proceedings of the 5th international
symposium on Memory management, pp. 115-125,
ACM, 2006.

[22] M. Ko'lling, B. Quig, A. Patterson, and J.
Rosenberg, “The bluej system and its pedagogy,”
Computer Science Education, vol. 13, no. 4, pp. 249-268,
2003.

[23]C. Huizing, R. Kuiper, C. Luijten, V. Vandalon, et al.,
“Visualization of object-oriented (java) programs.,” in
CSEDU (1), pp. 65-72, 2012.

[24] S. Halim, “Visualgo,” Dostupne” net/en, 2015.

z:j https://visualgo.

[25] A. Moreno and M. S. Joy, “Jeliot 3 in a demanding
educational setting,” Electronic Notes in Theoretical
Computer Science, vol. 178, pp. 51-59, 2007.

[26] J. Yang, Y. Lee, and D. Hicks, “Synchronized static
and dynamic visualization in a web-based programming
environment,” in Program Comprehension (ICPC), 2016
IEEE 24th International Conference on, pp. 1-4, IEEE,
2016.

[27]R. Ishizue, K. Sakamoto, H. Washizaki, andY. Fukazawa,
“Pvc: Visualizing ¢ programs on web browsers for
novices,” in Proceedings of the 49th ACM Technical
Symposium on Computer Science Education, pp.245-
250,ACM,2018.

Page 126

https://www.researchgate.net/publication/339028160

E AL e I D1 G P RO |
YT FAT:

faufys: .. sca=a
oNeraser=a faoa
eI =ren 2rd |

(2

o

SfeIaEfaen: arat:
UhTRIET: | Ta=
HdTT g FS A

STI_TA: b:, <%
AR: sfa Risam
feargonfa sri S=a: |

& | HETYUERE:
TheleEl - RO

0 et F agvdl

Email : chaitanya.lakkundi @gmail.com

y Ay v oty ubeeg ufsd w@m@ -
Hefaufaaemds adEmasm e
TR GHEE aue: Fafyre: Wgr: garfea:” gfa |
R’ AT @ e Aty wremHy Te:
= = ST g | S SioeaTe, 1 srfereroiia |
wier higeRT 31 See |
HRSTATEATTHR: HiSeaATeaae nesm: |
w: foemaRe: Ffs 4 oo fofaqam @ @@=
foufoemeds sgigpa: | @ TA TER: TER: S
BRI Fa: | a6 Ieeree e i -
‘In Panini We Trust: Discovering the Algorithm for Rule
Conflict Resolution in the Astadhyayi® (/@ wrfomr
faafam: - ot frawfaisraey weam=
wishaman: srawory) B |
3 Ifglaar ‘STeremil’ ATHORIE: HET T:
T, T UTOTHG o Wea: | 319 s o Segpa T
Frerm: gorevor frergn: @i | gart gafor Sugs wny-
G A g T | WEgRIeEi fRatorhriae wiswar’
T g | g wef ettt Rl wafw
R A TG TS TG hirad T , B Tead:

amﬂa f&x

-

ﬂ#ﬁwﬁaﬁwm -ﬂaﬁmﬂuwﬁga

: 'E’H-ilﬁig_
e &‘-‘D’l’i nﬁm{

¥ maaq

(AP 0 AT3 928D Erada
HFWMESW TLAATA AT o Tﬁﬂu

W Rt

AW FuAR G N 3T FIAG DA

ISETEGIETm

T RGO TIA I
ﬁgmag

i,

aradn --xmsﬁgﬁm

LY =

Ve \

SERETETIE:, e aRNTIEIgUISHT s diesthl

vafd sfd | Igetond wfe sfa w9
YA | T gid w0 weE o, /s
o1 Wit forq 3fa T feremerm: | 7
+ fow gfr oo @ e e few:
wafd, A7 FHTta’ 3ha v ug e |
TPl TishaTal WETT ey e |
AT BT I - ¢, JAa0ie MH: R,
Ui AW 3. quie faem: (WRedm)
= |

IO G T AT, FA A, FA

o forre: o e e | @a wRe

WA gAeaT whisd fafgd wafq aqr
TEqdl TG ITTd Iq Halq wE
Ao 2 3R | aEeE wege Ui

Tiftrfmefion T aRemrgs ey | g

T - forwfawe w3 s 3f |

AN JEY JARY faHw
gt shaor ety | o fawfame (g
FEA: PG WD) WA w
wofan sfa fram: | srelq a@ e
WATE: Iffh: add e ygha: wafd |
T ‘IAatd g el uemfie:
AT : WIS |

TSTAIEaoT TAET Yo T g

v fafka: g g Tereusg serm=a |
TSR AT ST TS | UReg, o uiRgutar
I Terw 3 h% WM SAThLOTT Y
IufRra: wafd |

Temiue: Ifdfa - Tt
wogfafiT: SraTeRToY: 3T g wele gragof
AT FHaq 3id | 3 T[T F: Iaaa
YO Paw TOW RewE o
Frrstfa | srereriy thafter smaq e
THTOTE | G 3T I: | 3 @
A ST g Taed o |

T URgTeae 37ek: - ‘gfgroremT: ' B |
I SO T HE W qq T
3f q& wiqare | T + f seafer e
T U dfe g wrEmg Yadd sia
e meE: | aa & fa sfa gfeoram
Terermr |

T TR wge: gl Wi | a
Fferoram:” gty aref: srereATEAT WEA
I TE | LY THagA & el
ufrdae: gfa g Frofaem | aq Frofg
TEA: e URgierEr: | e
AT @0 afs |YLeE: Ta

FEOTH=T: | 9
el - R0

Troqem: ayg: qf¢ @ el Wi wiq
YIS, AAYT G G AT WHHNE 7
WAq | TARY THG wY Fagonaq g
AT | q o e -

AT ol ATe] STeTTE o ehTar |

FFAIH TN WG g ||
Bl

B el g AR | U ReHd
T3 T geaedadr: (GHEegHal:)
T wifer: gauq et o Tt |
T TSUeR /e g - I FAY e
WY AT gAroT wiier: frsredy wafa
(T T 3Tk i) o farwfamer:, o
< gferoramt feremmre wenfae: @l wdeay
Bl

T W& T8 ARG
WW,WNW:
Frroostt rarfer | T Tor A ST AT
aref: Afe g€ wgen uRafdq: A |
Fyf = o T&ga: |

gD wERT: UNWReUTEd: A
SeErE FHTA TS, A el e | 4 gl
Iq agY Togy srngwes frofa: orfy
YU HaTgevo watq gfa | awt
TN & Je-aET A9 Ty | G-
T SRATHUTCH YGRS
JafasgTEEHEE SfHar faees-
gdur fogaEdor MEI SETETe
ey, I Srane T gt |
AR FEEUTVT JATHAR BRI
TEt 3fd WTEd | HIERY WAy 9
H: YA wUTOT gt fhadt a1 9@
i ey fawareg weta: |
¢ | TR

TRl - ROV

FHET JUG U UHICHEIGAT
SueTfU: | W oEfd - HgUEREY B
v e g | st fafer: s an
Faaaafaa: ot @ o€ =
TEUTHTAA: Y W T | g LA
Y aered g wurde fagEt
gl T W aq IAE A SRS
wurior freme 3fa |

TR e YT A, AGehg e
T’ gt Fofae wafa sm=rfaeraan |
TE qAU A M (Ui WaeEg
wWerEara: a9y o g
agaRT TTET: |

IR I e TG A G
(‘fowfavg w @’ sfa) S
AT o U RBTOT QI T AT | g4
qga: R A T | wEEEH T |
FTHTOM: YT T SrGigai |
a urfer:, e, gastfer: afq s
TAg: | WA U TS ST I
B Sead | e iR afgeEl o
wgereaT fafs: frad | s qraq s
TR TR s ol
i | a Iepe: Torgfe: wefifn: = s
FHa: | g wgat 9 e wii-
TrfaT: | 37d: T UTHA WAL WTHIOTER |
T ARl el Aq TR Reden
et fogw: wor=r awi vl @@ wipd
FHaq | qq IR fRammn: wEmE:
foageetter W@t W WgaATq |
frgeeliaTaaRieae wifheh-Samed =
TRt g Tpas |

SOlagger - Towards Classifying Stack Overflow
Posts through Contextual Tagging

Akhila Sri Manasa Venigalla
Indian Institute of Technology
Tirupati, India
cs18m017@iittp.ac.in

Abstract—There is an ever increasing growth in the use
of Q&A websites such as Stack Overflow (SO), so are the
number of posts on them. These websites serve as knowledge
sharing platforms where Subject Matter Experts (SMEs) and
developers answer questions posted by other users. It is
effort intensive for developers to navigate to right posts
because of the large volume of posts on the platform, despite
the presence of existing tags, that are based on technologies.
Tagging these posts based on their context and purpose might
help developers and SMEs in easily identifying questions
they wish to answer and also in identifying contextually
similar posts. To support this idea, we propose SOTagger
as a prototype plug-in for Stack Overflow to tag questions
contextually. We have considered SO data provided on
SOTorrent and automated the identification of 6 categories
of questions using Latent Dirichlet Allocation. We have also
manually verified relevance of these categories. Using these
categories and dataset, we have built a classification model to
classify a post into one of these six categories using Support
Vector Machine. We have evaluated SOTagger by conducting
a user survey with 32 developers. The preliminary results
are promising with about 80% developers recommending the
plugin to others.

Index Terms—Stack Overflow, Contextual Tagging, LDA

I. INTRODUCTION

| Stack Overflow (SO) is one of the most frequently
used websites with about 11M visits every day. With a
user base of 10M users, about 7.3K questions are posted
per day. It comprises of about 18 million questions, of
which 71% are answere These questions correspond
to various technical categories, tools, libraries and are
tagged into atmost 5 of 54K tagsE] present on the website.
This tagging is done based on their technical relevance
with the posted content and is used to organize posts
and thus help users to browse for questions and answers
concerning to particular topics such as javascript, jquery,
python and so on [1]. However, these tags don’t classify
questions based on the context in which they are asked.
The context would capture situations pertaining to con-
ceptual understanding, issue resolving and so on.

Recent studies have aimed at classifying questions on
SO based on their context and arrived at almost similar

DOI reference number: 10.18293/SEKE2019-067
Thttps://stackexchange.com/sites?view=list#traffic
2http://bit.ly/SONumTags

Chaitanya S. Lakkundi
Indian Institute of Technology
Tirupati, India
cs18s502@iittp.ac.in

Sridhar Chimalakonda
Indian Institute of Technology
Tirupati, India
ch@iittp.ac.in

taxonomies of categories. They have used various tech-
niques such as K-NN clustering [2], automatic catego-
rization by topic modeling using LDA and MALLET [3]
and manual categorizations [1l], [4]. Some of these stud-
ies have aimed to contextually categorize technology-
specific questions such as questions related to Android
application development [2] and mobile operating sys-
tems like Android, Apple and Microsoft Windows. How-
ever, existing tools do not categorize posts on SO plat-
form based on context. To this end, the contributions of
this paper are as follows:

. SOTaggerﬂ - a prototype plug-in that classifies posts
on SO into six categories: Conceptual, Discrepancy,
Implementation, Error, Learning and MWE (Minimum
Working Example).

» Application of NLP techniques - Latent Dirichlet
Allocation(LDA) and Machine learning (ML) classi-
fier - Support Vector Classifier (SVC) to classify SO
posts.

« Evaluation of SOTagger with 32 professional devel-
opers and manual cross-verification of 100 posts.

II. ReLaTED WORK

In the recent years, several studies have been done
to analyze posts on SO, which include analyzing de-
velopers’ area of interest based on questions asked [5],
analyzing and suggesting tags of the questions [2] [1]
[6] [7], identifying difficulties faced by developers [8],
identifying trending technological topics [9], and so on.
Researchers have classified posts on SO based on the
context by manually interviewing software developers.
In a survey conducted by Latoza et al., 179 professional
software developers were asked to identify hard-to-
answer questions pertaining to code that they solicit
wherein 371 questions were reported. They have man-
ually categorized them into 21 categories with 94 dis-
tinct questions, of which the 5 most frequently reported
categories were - Rationale, Intent and Implementation,
Debugging, Refactoring and History of code [10].

Studies have been conducted to investigate various
question categories based on the context in which they

3https://github.com/chaitanya-lakkundi/SOTagger

https://stackexchange.com/sites?view=list#traffic
http://bit.ly/SONumTags
https://github.com/chaitanya-lakkundi/SOTagger

were asked. Rosen et al. manually categorized 380 posts
on SO into 3 question categories based on the three in-
terrogative words- How, What and Why, corresponding to
three mobile operating system categories - Android, Apple
and Microsoft Windows [4]. Treude et al. have manually
classified 385 questions on SO into 10 categories - How to,
Decision Help, Discrepancy, Environment, Error, Conceptual,
Review, Non-Functional, Novice, Noise [1]]. Although meth-
ods involving manual effort are necessary to capture
ground truth, we see a need to find better ways to scale
this approach such that automation is possible.

Elucidating further studies, Beyer et al. have proposed
7 question categories - API Change, API Usage, Concep-
tual, Discrepancy, Learning, Errors, Review by manually
classifying 500 SO Android posts and performed auto-
matic classification using supervised machine learning
algorithms with a precision of 88% [2]. Allamanis et
al. found 5 major question categories using LDA and
unsupervised machine learning algorithm [3].

Insofar as the development in methods of classification
is concerned, the research community has progressed
from significant manual studies to automating them
using machine learning algorithms and NLP techniques.
Contemporary tools such as ENTAGREC++ [6], TagCom-
bine [7] have been developed to provide tag suggestions
to users when they post questions on SO. These tools
suggest tags based on technologies involved in the post
content. The prototype plug-in we propose, SOTagger,
tags posts on SO based on their purpose or intent rather
than considering the technologies involved. Based on
the existing work on classifying posts [2] [1] [4] [3], we
propose a taxonomy to tag posts contextually.

III. Prorosep TaxoNoMY

Posts can be classified using several NLP techniques
such as LDA, LSA, TF-IDE However, inline with the
existing work, we followed LDA technique.

We present six question categories that we have de-
rived from existing studies and results obtained from
LDA topic modeling. As a result of LDA topic modeling
configured for 6 topics, we obtained 6 topics charac-
terized by keywords for each topic, along with the
weightage of keywords in every topic. Omitting the
technical terms and considering interrogatives, it has
been observed that Topic 0 comprises of discrepancy, Topic
1 contains error, Topic 2 contains how-to or implementa-
tion, Topic 3 contains learning, Topic 4 contains conceptual
and Topic 5 contains MWE keywords respectively, as
shown in Table [I| These results obtained by applying
LDA on SO posts indicate the presence of contextual
categories in SO data. Comparing these results with the
existing taxonomy discussed by Beyer et al. in [2] and
other taxonomies presented in [1] [4] [3], we reorganize
few categories in the existing literature and arrive at
labelling five of these six topics as conceptual, discrep-
ancy, implementation, error and learning respectively. We

TABLE I
Taxonomy oF QUESTION CATEGORIES
S.No. Topics Keywords
1 Conceptual What is use/difference,
Is there a way, Is it possible[2]
2 Discrepancy doesn’t work, tried to,
have/facing problem, before upgrade
previous version [2]
3 Implementation ~ How to implement [4] [3] [1]
4 Error Exception, error [2]
5 Learning suggest, tutorial,
where can I find [2]
6 MWE for this code, code tags

observed that many of the posts on SO contained code
snippets, which could indicate that users post questions
containing code to reproduce the bug they are facing.
Such code snippets serve as Minimum Working Examples
(MWEﬂ which is proposed as another category MWE.
We observe this naming to be inline with work proposed
by Allamanis et al. [3]. Each post can be classified into
one or more of these six categories.

Dataset Existing
from SOTorrent Taxonomies
Lemmatized Topics with IT%
Document Keywords l
Data Latent Dirichlet Naming Topics
Preprocessing Allocation Model 9 fop
Named
Categorized Topics
$ Dataset %

Build SVM
Model

Append Labels

SOTagger to Dataset

Fig. 1. Overview of Approach for SOTagger

IV. DEsiGN METHODOLOGY

We followed a six step approach in designing a con-
textual classification model as shown in Fig

Step 1 - Extract DataSet. To perform categorization
of SO posts, we downloaded Posts.xml file avilable on
SOTorrenf’l We considered a subset of this file that con-
stituted 100K Stack Overflow posts under Body column
and filtered out questions based on PostTypeld column
that resulted in a dataset of 20K posts.

Step 2 - Data Preprocessing. Data present in Body
column whose PostTypeld = 1 was considered for pre-
processing. We considered English stop words provided
by NLTK library and omitted interrogative words from
the list of stop words keeping in view, the taxonomy pro-
posed. We processed the data for stop word, punctuation
removal and lemmatization using spaCy.

4https://stackoverflow.com/help/mcve
5https://zenodo.org/record/22731 17

https://stackoverflow.com/help/mcve
https://zenodo.org/record/2273117

|Whai| is the preferred syntax for defining enums in JavaScript?

®

What is the preferred syntax for defining enums in JavaScript? Something like:

my .namespace.ColorEnunm
RED : ©,

184 =t

if(currentColor == my.namespace.Colo

e

}

Er

u

.RED) {

o a more preferable idiom?

javascript syntax enums

Learning

e
!

O)
| ®

Fig. 2. A Snapshot of SOTagger

Step 3 - Latent Dirichlet Allocation Model. We
applied LDA to perform topic modeling. We primarily
created a dictionary of lemmatized words and then
created a corpus of these words with their frequency
of occurrence. Considering this corpus, we generated an
LDA model that categorizes given data into 6 topics.

Step 4 - Naming Topics. Based on existing taxonomies
in the literature [2] [1] [4] [3], we identified contextually
useful keywords in each of the 6 topics, and used them
to identify and name topics.

Step 5 - Append Labels to Dataset. The LDA model
provided us with a topic-document correlation matrix,
where document refers to content of one post. This ma-
trix contained probabilities of every identified topic for
each document. We then classified posts in the dataset
into topics based on the dominant topic from correlation
matrix which had the highest probability.

Step 6 - Prepare a Machine Learning model - Build
SVM Model. We applied various machine learning clas-
sification algorithms such as Linear SVC, Logistic Re-
gression, Multinomial Naive Bayes, Random Forest Classifier
to arrive at the best classification model on available
dataset with 75% train and 25% test data. We observed
that SVC was able to classify the given data set with
higher accuracy (78.5%) than other models. Based on
this, we designed SVC model and pipelined to Calibrat-
edClassifierCV to get prediction probabilities.

V. DeveLopMENT oF SOTagger

This plug-in has been developed as an extension to
Google Chrome to support classification of posts on SO.
It tags posts on SO based on their context. SOTagger
reads SO posts on the page and extracts questions from
these posts which are fed into previously developed
ML classification models using SVM classification. This
model outputs the categories of specific posts along

with associated probabilities which are presented as tags
below the posts on SO platform.

A snapshot of SOTagger is shown in Fig [for a
sample post on SO. Tags corresponding to context of the
question are displayed below the post as shown in [D] of
Fig[2]and are arranged in decreasing order of probability.
The probability with which a post is tagged into each
of the displayed categories is represented by a bar as
depicted in [E] of Fig[2l According to SOTagger, this post
is classified as MWE category with highest probability.
As pointed in [B] of Fig [2| presence of code segment
justifies classification of the post into MWE category.
Presence of What keyword as highlighted in [A] of Fig
contributes to Conceptual tag, with a lesser probability
than MWE tag. is there phrase represented by [C] of Fig
contributes to Learning category, with least probability.

However, the keywords or phrases demonstrated in
Fig 2 are for the purpose of analyzing the correctness of
SOTagger, but are not the only basis for classification. Ac-
tual classification was based on NLP and ML techniques
that have been used in development of SOTagger.

VI. EvaLuaTiON AND RESULTS

We evaluated SOlagger by conducting a user survey
with 32 professional developers with a development
experience ranging from 2 years to 19 years.

The participants were asked to use SOTagger, navigate
to SO website and analyze the contextual tags added by
SOTagger. A user survey was conducted with the help
of five point Likert scale, containing a questionnaire as
provided in Table

Apart from user survey, we manually evaluatedﬁ con-
textual tags of about 100 random posts on SO tagged
by SOlagger and obtained an accuracy of 77%. The

6https://git.io/ij83

https://git.io/fjC83

results of our survey indicate, SOTagger had a good
user-friendly interface (82% in Q1). In Q2, about 85% of
participants have agreed that SOTagger has appropriately
tagged the posts. The ratings in Q3 and Q4 indicate
that SOTagger has helped about 80% of participants in
faster browsing of posts on SO and that the experiment
has been considerably interesting (81% in Q4). In Q5,
most of the participants have agreed that they would
recommend SOTagger to their peers (83%). .

TABLE II
QUESTIONS IN SURVEY USING A 5-POINT LIKERT SCALE.

Q1: How easy was it to use SOTagger interface?

Q2: SOTagger has tagged SO posts
correctly based on their context.

Q3: SOTagger has helped me in quick browsing
of posts based on context.

Q4: SOTagger has kept the whole experiment interesting
and informative.

Q5: I will recommend SOTagger to my peers.

VII. THREATS TO VALIDITY

We have manually examined top 20 posts based on
probability values in each of the 6 topics generated by
LDA technique to assign topic name. This could be in-
accurate considering limited number of posts examined.

To understand the accuracy of classification, we ran-
domly browsed 100 posts on SO. We realize that exami-
nation of 100 posts in total is not enough to get an overall
idea about the accuracy of classification. During the
creation of LDA model, we tweaked a few parameters
such as chunk size and number of passes which resulted
in different statistical distribution of topics. Some of the
distributions were imbalanced and biased towards one
particular topic. We selected those parameters which
resulted in a nearly Gaussian distribution. We assume
that LDA model which classifies data in Gaussian dis-
tribution performs better than other models. However,
initial results show that accuracy of trained LDA model
is around 70%, but with scope for experimenting with
other distributions. The machine learning model has
been trained on a dataset of 20K questions, however we
should consider a larger number of posts from SO to
improve our approach.

VIII. ConcLusioN AND FuTure WoORK

In this paper, we presented SOTagger, a prototype
plug-in to SO that tags questions on SO based on the
purpose for which they are asked. We performed LDA
topic modeling on data set available on SOTorrent to
identify categories. We labelled the resultant LDA topics
by harmonizing the existing taxonomies. We presented 6

question categories, independent of technical aspects in-
volved in the questions. We then labelled question posts
in the dataset into one or more of the 6 categories. We
applied SVC on the labelled dataset to obtain machine
learning classification model which was integrated into
the plug-in to support tagging of posts on SO.

As a part of future work, we plan to extend SOTagger
to display contextual tags of posts on SO landing page
by training machine learning model only over titles of
questions. We plan to work in the direction to improve
levels of taxonomy from single level presented in the
paper to multiple levels and display the same as a part
of detailed contextual tagging. We could conduct an
experiment to check whether we get better results by
considering the opening and closing statements of SO
posts.

Questions tagged with MWE could be of greater use
for future research. Researchers interested to understand
and analyze code provided by users when posing ques-
tions can easily find questions with this tag. We envi-
sion that future work based on this paper may include
clustering posts classified as MWE to automatically find
bugs, combine co-occurring tags to formulate new tags
and so on. Also, several empirical studies on SO posts
such as understanding code quality, misuse of code snip-
pets and automatic bug reporting could be conducted.

REFERENCES

[1] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers
ask and answer questions on the web?: Nier track,” in 2011 33rd
International Conference on Software Engineering (ICSE). 1EEE, 2011,
pp- 804-807.

[2] S. Beyer, C. Macho, M. Pinzger, and M. Di Penta, “Automatically
classifying posts into question categories on stack overflow,” in
Proceedings of the 26th Conference on Program Comprehension. ACM,
2018, pp. 211-221.

[3] M. Allamanis and C. Sutton, “Why, when, and what: analyzing
stack overflow questions by topic, type, and code,” in 2013 10th
Working Conference on Mining Software Repositories (MSR). IEEE,
2013, pp. 53-56.

[4] C. Rosen and E. Shihab, “What are mobile developers asking
about? a large scale study using stack overflow,” Empirical Soft-
ware Engineering, vol. 21, no. 3, pp. 1192-1223, 2016.

[5] R. K-W. Lee and D. Lo, “Github and stack overflow: Analyz-
ing developer interests across multiple social collaborative plat-
forms,” in International Conference on Social Informatics. Springer,
2017, pp. 245-256.

[6] S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec
++: An enhanced tag recommendation system for software
information sites,” Empirical Software Engineering, vol. 23, no. 2,
pp- 800-832, 2018. [Online]. Available: https://doi.org/10.1007/
510664-017-9533-1

[7] X.-Y. Wang, X. Xia, and D. Lo, “Tagcombine: Recommending tags
to contents in software information sites,” Journal of Computer
Science and Technology, vol. 30, no. 5, pp. 1017-1035, 2015.

[8] A. Joorabchi, M. English, and A. E. Mahdi, “Text mining stack-
overflow: An insight into challenges and subject-related diffi-
culties faced by computer science learners,” Journal of Enterprise
Information Management, vol. 29, no. 2, pp. 255-275, 2016.

[9] A.Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? an analysis of topics and trends in stack overflow,”
Empirical Software Engineering, vol. 19, no. 3, pp. 619-654, 2014.

[10] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about
code,” in Evaluation and Usability of Programming Languages and
Tools. ACM, 2010, p. 8.

https://doi.org/10.1007/s10664-017-9533-1
https://doi.org/10.1007/s10664-017-9533-1
https://www.researchgate.net/publication/335155157

2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)

StackDoc - A Stack Overflow Plug-in for Novice Programmers that
Integrates Q&A with API Examples

Akhila Sri Manasa Venigalla, Chaitanya S. Lakkundi, Vartika Agrahari, Sridhar Chimalakonda
Department of Computer Science and Engineering
Indian Institute of Technology
Tirupati, India
{cs18m017, cs18s502, cs18m016, ch} @iittp.ac.in

Abstract—There is a tremendous increase in the use of online
coding platforms, courses and walkthrough tutorials to learn
programming today. Stack Overflow, a Q&A website of crowd-
sourced knowledge on programming is one of the popular
platforms that developers and learners use to ask and answer
Q&As related to programming. However, novice programmers
often face difficulties in understanding the answers as they
may contain new terminologies, function calls and attributes
of certain technology or programming language. Researchers
have proposed different ways to augment Stack Overflow in the
literature, but to the best of our knowledge, there is no work that
exists to augment Stack Overflow posts with definitions of API
calls and relevant examples. To this end, we propose StackDoc, a
prototype plug-in that augments Stack Overflow with definitions
and examples of API calls in the questions and answers with
the goal of helping novice programmers. We did a preliminary
survey with 20 students of various universities, novice to Java and
85% of the users reported positive experience with the plugin.

Keywords- Stack Overflow; API call; Novice Programmers;
plug-in; Learning

I. INTRODUCTION

Programming is considered as one of the fundamental skills
in the 21st century. With the emergence of tremendous web
content and novel technologies, one can learn programming
through competitive programming or through online courses or
with the help of Q&A sites. Developers today extensively rely
on using code snippets and answers present Q&A websites like
Stack Overflow [1]. It has been observed by researchers, that
developers use Q&A sites such as Stack Overflow to clarify
their doubts [2]. These questions on Stack Overflow could
refer to debugging a code or adding new features to a given
code [3] [2]. To raise their level of understanding on the code
snippets provided on Stack Overflow, users generally search
for definition, usage and importance of certain function calls
that are used in the code snippets [3].

It was also observed that code examples are searched in
Android API documentation by programmers [4]. However,
most of the novice programmers might not be aware of all the
functions and attributes used in code snippets, making code
reuse difficult for them [5] [6] [7]. If these Q&A sites can serve
as knowledge reserves, beginners might be able to understand
how to solve a problem and purpose of using different function
calls. This analysis of existing literature presents the need to
support novice programmers with additional information to
effectively use Q&A websites. Also, we observed that tools
such as ExampleCheck [8] have been developed to augment

2161-377X/19/$31.00 ©2019 IEEE

DOI 10.1109/ICALT.2019.00077

247

Stack Overflow to support developers by reporting incorrect
usage of APIs. However, to the best of our knowledge, existing
work did not focus on providing information about API calls
on Stack Overflow for novice programmers, motivating the
need for our work. In this paper, we propose to augment
Stack Overflow with definition, usage and examples for certain
inbuilt API calls of Java programming language.

StackDoc' is a Stack Overflow prototype plug-in to help
beginners for simple and rapid learning. In this preliminary
version of our plug-in, a pop-up consisting of Java API calls
information is shown on the webpage to the users, instead of
searching on other sources for API definitions. We also con-
ducted a survey to evaluate our plug-in and received satisfac-
tory results with feedback of about 85% users recommending
the plug-in to their peers. Fig 1 shows a high-level overview
of StackDoc. We extract API definitions from standard Java
documentation, OpenJDK 10% and to demonstrate our idea,
we use JExamples® to extract API examples. This extracted
information is displayed to the user on Stack Overflow. The
essence of the plug-in is to extract examples and information
about a certain API call from multiple sources and present this
information to novice programmers.

Java API
documentation

»

_-':?'sta:k overflow
+

StackDoc /
=

JExamples

Fig. 1. Overview of StackDoc

The remainder of this paper is structured as follows. Section
II discusses the related work followed by Section III, which
focuses on design methodology and development of StackDoc.

Uhttps://github.com/AkhilaSriManasa/StackDoc
2http://cr.openjdk java.net/~iris/se/10/latestSpec/api/
3http://www.jexamples.com

IEEE
bicomputer
society

We present the evaluation and user survey results in Section IV
and Section V. Finally, we discuss the limitations in Section
VI and end the paper with conclusions in Section VII and
future directions in Section VIIIL.

II. RELATED WORK

The number of code snippets on websites such as Stack
Overflow are increasing dramatically and most of these snip-
pets use many API calls [9]. There are various development,
debugging and learning tools to support novice programmers
(as shown in Table I). Scratch supports beginners to learn
programming by designing, creating and remixing code blocks
[10]. Alice was developed to support novice programmers
learn basic concepts of programming through 3D visualization
[11]. Treude et al. have augmented API documentation with
insights from Stack Overflow [12]. Tools such as Prompter
have been developed to support users with discussions on
Stack Overflow, based on the context of code in an Eclipse IDE
[13]. Exemplar provides applications relevant to queried APIs
entered by users in the tool [14]. The relevant applications
are retrieved using information retrieval and program analysis
techniques [14]. In Examplore, code snippets have been bound
with the examples of API usage and definitions of API calls
[15]. Examplore produces an interactive visualization to view
general usage patterns of an API call in a code snippet
[15]. Blueprint integrates source code examples into Adobe
Flex Builder, a development environment, resulting in faster
example code search [16]. Zhang et al. augmented Stack
Overflow with API misuse warnings through a Google Chrome
plug-in, ExampleCheck [8]. It displays a pop-up with API
misuse alert and a suggestion to fix these misuses by providing
curated examples that use the specific API call correctly [8].

TABLE I
RELATED WORK

S.No. Domains References
1 Development Examplore [15]
Exemplar [14], Prompter [13]
Blueprint [16]
2 Debugging [17], [18], ExampleCheck [8]
3 Learning Scratch [10], Alice [11]

Although ExampleCheck provides examples for correct us-
age of APIs, it does not provide definitions and examples of
any other APIs used in the code snippets. StackDoc displays
definitions and examples of all identified in-built API calls. It
can thus serve as a unified solution, as it reduces the effort of
searching for API usage and definitions explicitly. Exemplar
provides a search interface to retrieve examples for queried
API calls, whereas, StackDoc integrates API definitions and
API examples inline with the code snippets in java.

III. DESIGN AND DEVELOPMENT OF StackDoc

We have developed StackDoc as a browser extension and
tested on Google Chrome and Mozilla Firefox browsers. Stack-

248

Doc facilitates novice programmers by parsing the Stack Over-
flow webpage and retrieving documentation for identified API
calls from online sources such as OpenJDK and JExamples.
These API calls are highlighted, for which, documentation and
relevant example usages are displayed in a popup to the user.

This could help users learn about many new API calls that
the user might be unaware of. This design methodology of
StackDoc makes it distinct from existing approaches which
display definitions and examples after an explicit query from
the user. Whereas, we rely on standard Java documentation,
OpenJDK, to retrieve API definitions and JExamples.

Fig2 shows the development process of StackDoc consisting
of 5 steps.

In the first Step, we create a regular expression to identify
function calls in Java. The regular expression we used to
identify API calls is given below.

(([a—zA-Z$_]+[a-zA-20-9S_]x)\.)?
[a—zA-Z$_1+[a—-zA-Z0-9S5_]*\ (

The defined regular expression (regex) accounts for the
fact that API calls can be made using a class name directly
or using an instantiated object. If the function is called
directly without specifying any variable or class name, then
the regex will still identify the function call. The defined regex
identifies API calls of the form <variable>.<function_call>,
<class_name>.<function_call>and <function_call>.

In Step 2, StackDoc generates a list of keywords using the
regex defined previously. These keywords are matched with
the existing corpus of class names and API calls of Java 10
specification. StackDoc then stores all the identified API calls
into an array for further processing.

In the third Step, for every identified API call, we search its
documentation in OpenJDK. Initially, we search the combina-
tion of <variable or class name>.<function_call>directly in
the documentation. If a matching combination is found, then
its documentation comprising of the arguments and definition
is fetched. If any matching combination is not found, we
search OpenJDK documentation only for the <function_call>.
Once a matching API call is found, it is highlighted and made
interactive so that the user will be able to click on it.

As a part of Step 4, when any of these highlighted API calls
are clicked, corresponding usage examples for the particular
API call are fetched from JExamples website.

Finally, in Step 5, the documentation of API calls and their
usage examples are concatenated and displayed as an overlay.
The overlay popup is hidden by default and becomes visible
only when the user clicks on any highlighted API call. For
every API usage example, a link to JExamples is provided
from where the complete example can be viewed.

IV. EVALUATION

We conducted a study to evaluate the usefulness of Stack-
Doc. We aimed at assessing the extent to which StackDoc
could be helpful to novice programmers in understanding and
implementing API calls and data types in Java. Hence, we
considered 20 university students novice to Java. The study

Step 1 = Step 2
e Matched AP calls "
Stack Overflow ERegu[a_r Search
Webpage xpression OpenJDK
Matcher .
Documentation
=|| Matched API calls
—l | present in OpenJDK
Step 5 Step 4
? P = P < | Step 3
(tH API calls and (] A ep
Examples o
Overlay of API Search JExamples Retrieve API
calls and their to find Examples of Definition

Examples

API calls

Fig. 2. Design Methodology of StackDoc

was performed with the help of a questionnaire based on Likert
scale [19], on personal laptops of students.

A. Procedure

All the participants were requested to add StackDoc exten-
sion to browsers on their laptops. They were all provided with
a slide-show depicting the working of StackDoc, that served
as a basic tutorial. These 20 participants were then asked to
search for questions related to Java programming language and
go through at least 20 questions and answers that they have
retrieved as a result of their search. They were requested to use
StackDoc to clarify their doubts about usage and definitions of
API calls that might arise in the process of their observation.

After completion of the above exercise, participants an-
swered a questionnaire using a 5-point Likert scale. Ques-
tionnaire given to the participants is as shown in Table II.

B. User Scenario

Suppose Veda is a novice programmer working on Java and
wishes to know why sorted arrays are processed faster than
unsorted arrays, for which she queries on Stack Overflow.

She is then displayed with a list of posts related to this
query as shown in [A] of Fig 3. She randomly selects one
of the displayed posts. Once a post is selected, Java API calls
present in code snippets of the post are highlighted ([B] of Fig
3). Among the answers displayed, Veda encounters API calls
such as System.println(), System.nanoTime(), Arrays.sort(),
Random.nextInt() and wishes to know their definitions and
usage. Veda clicks on System.println() in the code snippet.
She is then displayed with a pop-up containing definition and
examples of System.println() as shown in [C] of Fig 3.

249

If Veda navigates to another example containing log and
clicks on the API call, she will be able to view description
and usage of log(Level level, Supplier <String>msgSupplier)
(as represented in part [D] of Fig 3).

V. RESULTS
A. Questionnaire

As reported in Fig 4, StackDoc had a good user-friendly
interface (84% in Q1). In Q2, participants have agreed that
StackDoc retrieved moderately sufficient number of examples
to understand the API usage (83%, about 10 participants voted
for Agree and 5 participants voted for Strongly Agree out
of 20). The ratings in Q3 and Q4 indicate that StackDoc
has helped participants learn about partly unaware API calls,
reducing the search time (73% in Q3 and 79% in QA4).
Participants have also suggested to improvise StackDoc to
support other languages and to provide descriptions to a wider
range of API calls. In Q5, most of the participants have agreed
that they would recommend StackDoc to their peers (83%).

VI. LIMITATIONS

We presented a prototype of StackDoc, that augments Stack
Overflow by helping programmers to learn about Java API
calls. However, our plug-in could be improved in multiple
ways in future versions. Currently, StackDoc shows API
definitions only for Java, restricting its application to one
programming language. Also, we were not able to find API
definitions for few APIs as they do not exist in OpenJDK 10 or
might have been deprecated. Similarly, the limited availability
of examples on JExamples website limits StackDoc to retrieve
examples for few of the desired APIs.

= stackoverflow
Search Results

) Stack Overflow |
wiry i i tanter 10 process a sorted amary uan an urmoried anay

81 results Fnirvance | Haws

22550 @ Why

o 10 process a sorted aay than an unsorbed armay?
Teams.

API Description
log
public void log(Level level,
5 ier<string> msgSupplier)

Log & message, which is only to be constructed if the loggeng level is such that the
message will actually be logged

If the logger is currently enabled for the given message level then the message is
constructed by involang the provided supplier function and forwarded 1o all the
registered output Handler objects.

Parameters:

level - One of the message level identifiers, e.g.. SEVERE

msgSupplier - A hmction, which when called, produces the desired log message
Sincay

18

APl Examples

return bundle.getString(key); 318 }catch
[MissingResourceException e){ 319
Logger . getLogger(getClass). getName()). 3 logiLevel . WARNING,
“RelativeDateFormatter™, e); 321 return *";

= stackoverflow
{
i @
4
) Stack Overflow
i) - s L
> en);
With 2 somewhal s bt s exenms fesull

Teams
Iy first Mought wass that soring brings the data inio the cache, but Than | thought how sity that o
Deécause e amay was just ganerated
« What i going on?
« Wy i i Laster fo process a sored amay than an unsoried amay?

+ The code s summing up some independent terms, and e onder should ol matier

Fig. 3. Example user scenario of StackDoc by user Veda; A: Search question on Stack Overflow; B: API calls highlighted by StackDoc; C: Description of
API call with Example as given by StackDoc; D: API Description for another example StackDoc

W Strongly Disagree
[hsagras

= Neutral

uigree

= Srrongly Agres

Fig. 4. Results of Questionnaire

In its current version, there is a delay between the user
asking for API definitions and StackDoc retrieving it from the
online sources, OpenJ]DK 10 and JExamples. The reason of

this delay being that StackDoc fetches required details only
after the user clicks on highlighted API call.

VII. CONCLUSIONS

We emphasized the need to support novice programmers
when they browse Q&A websites like Stack Overflow. Hence,
we have introduced StackDoc, a browser plug-in that augments
Stack Overflow. Our tool is an initial step to support novice
programmers with better mechanisms. We have extracted doc-
umentation of java API calls from OpenJDK 10 and examples
of these API calls from JExamples website. These API calls
are highlighted on Stack Overflow page and the extracted
information is displayed to the user as a pop-up when clicked
on the highlighted API calls. Our initial user study indicated
that StackDoc has helped users in finding definitions, but with
the need to have more examples. We plan to extend StackDoc
to support a larger number of programming languages and
multiple data sources. We plan to do an extended study with
50 users and incorporate changes to improve our plug-in.

VIII. FUTURE RESEARCH DIRECTIONS

Beyond StackDoc, our core idea is to support software engi-
neers by integrating documentation with software development
platforms. Here are a few potential future directions:

TABLE 11
QUESTIONS IN SURVEY USING A 5-POINT LIKERT SCALE.

Q1: How easy was it to use the plug-in
interface?(1=very easy, S=very difficult)

Q2: StackDoc has retrieved enough
number of examples to understand a
particular API usage. (1=strongly
agree, S=strongly disagree)

Q3: StackDoc has helped me in learning
about API calls that I wasn’t aware
prior to this exercise.

(1=strongly agree, 5=strongly

disagree)

Q4: StackDoc has made my learning
quicker by reducing my search time.
(1=strongly agree, 5=strongly disagree)

Q5: T will recommend StackDoc to my peers.
(1=strongly agree, 5=strongly disagree)

A. Code hosting platforms

For example, Github could be augmented with appropriate
documentation such as API information to help developers,
especially novice developers to understand source code repos-
itories.

B. Documentation for System Administrators

Documentation is critical in system administration tasks, but
is often missed as the focus is only on executing the tasks,
making it difficult for novice system administrators. We see
that developing a plugin to support novice system administra-
tors based on StackDoc is a valuable future direction.

C. Algorithm Documentation

Understanding code snippet might be difficult than under-
standing an algorithm for a novice programmer. If an algorithm
is available or if an abstraction can be created, code snippets
could be integrated with the algorithm.

D. Deployment Scenarios

While deploying an application, in case of failures, it is
difficult to identify code location of failed modules and make
necessary changes. Each module could be integrated with
deployment document containing code repository information.

IX. ACKNOWLEDGEMENT

We thank all the participants for their valuable time and
feedback that helped us in evaluating StackDoc.

REFERENCES

[1] Yang, Di and Martins, Pedro and Saini, Vaibhav and Lopes, Cristina,
“Stack overflow in github: any snippets there?” in 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR).
IEEE, 2017, pp. 280-290.

[2] R. Garcia, K. Falkner, and R. Vivian, “Systematic literature review:
Self-Regulated Learning strategies using e-learning tools for Computer
Science,” Computers & Education, vol. 123, pp. 150 — 163, 2018.

[3]

[4]

[5

—

[6

—

[7

—

[8]

[9

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

Ko, Andrew J and Myers, Brad A and Aung, Htet Htet, “Six learning
barriers in end-user programming systems,” in 2004 IEEE Symposium
on Visual Languages-Human Centric Computing. IEEE, 2004, pp.
199-206.

J. E. Montandon and H. Borges and D. Felix and M. T. Valente,
“Documenting APIs with examples: Lessons learned with the APIMiner
platform,” in 2013 20th Working Conference on Reverse Engineering
(WCRE), Oct 2013, pp. 401-408.

Lahtinen, Essi and Ala-Mutka, Kirsti and Jidrvinen, Hannu-Matti, “A
Study of the Difficulties of Novice Programmers,” in Proceedings of
the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education, ser. ITICSE 05. New York, NY, USA:
ACM, 2005, pp. 14-18.

Bosse, Yorah and Gerosa, Marco Aurelio, “Why is programming so
difficult to learn?: Patterns of Difficulties Related to Programming
Learning Mid-Stage,” ACM SIGSOFT Software Engineering Notes,
vol. 41, pp. 1-6, 01 2017.

Joorabchi, Arash and English, Michael and Mahdi, A.E., “Text mining
stackoverflow: Towards an Insight into Challenges and Subject-Related
Difficulties Faced by Computer Science Learners,” Journal of Enterprise
Information Management, vol. 29, pp. 255-275, 03 2016.

Zhang, Tianyi and Upadhyaya, Ganesha and Reinhardt, Anastasia and
Rajan, Hridesh and Kim, Miryung, “Are code examples on an online
Q&A forum reliable?: a study of API misuse on stack overflow,” in Pro-
ceedings of the 40th International Conference on Software Engineering.
ACM, 2018, pp. 886-896.

Subramanian, Siddharth and Holmes, Reid, “Making sense of online
code snippets,” in Proceedings of the 10th Working Conference on
Mining Software Repositories. 1EEE Press, 2013, pp. 85-88.
Resnick, Mitchel and Maloney, John and Monroy-Herndndez, Andrés
and Rusk, Natalie and Eastmond, Evelyn and Brennan, Karen and
Millner, Amon and Rosenbaum, Eric and Silver, Jay and Silverman,
Brian and others, “Scratch: programming for all,” Communications of
the ACM, vol. 52, no. 11, pp. 60-67, 2009.

Cooper, Stephen and Dann, Wanda and Pausch, Randy, “Alice: a 3-
D tool for introductory programming concepts,” Journal of Computing
Sciences in Colleges, vol. 15, no. 5, pp. 107-116, 2000.

Treude, Christoph and Robillard, Martin P., “Augmenting API Docu-
mentation with Insights from Stack Overflow,” in Proceedings of the
38th International Conference on Software Engineering, ser. ICSE ’16.
New York, NY, USA: ACM, 2016, pp. 392-403.

Ponzanelli, Luca and Bavota, Gabriele and Di Penta, Massimiliano and
Oliveto, Rocco and Lanza, Michele, “Mining StackOverflow to turn the
IDE into a self-confident programming prompter,” in Proceedings of
the 11th Working Conference on Mining Software Repositories. ACM,
2014, pp. 102-111.

Grechanik, Mark and Fu, Chen and Xie, Qing and McMillan, Collin and
Poshyvanyk, Denys and Cumby, Chad, “A search engine for finding
highly relevant applications,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1. ACM,
2010, pp. 475-484.

E. L. Glassman, T. Zhang, B. Hartmann, and M. Kim, “Visualizing API
usage examples at scale,” in Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, CHI 2018, Montreal, QC,
Canada, April 21-26, 2018, 2018, p. 580.

Brandt, Joel and Dontcheva, Mira and Weskamp, Marcos and Klemmer,
Scott R, “Example-centric programming: integrating web search into the
development environment,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 2010, pp. 513-522.
Spinellis, Diomidis, “Modern debugging: the art of finding a needle in
a haystack,” Communications of the ACM, vol. 61, no. 11, pp. 124-134,
2018.

Torroja, Yago and Loépez, Alejandro and Portilla, Jorge and Riesgo,
Teresa, “A serial port based debugging tool to improve learning with
arduino,” in Design of Circuits and Integrated Systems (DCIS), 2015
Conference on. 1EEE, 2015, pp. 1-4.

Likert, Rensis, “A technique for the measurement of attitudes.” Archives
of psychology, 1932.

